scholarly journals Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures

2017 ◽  
Vol 155 (3-4) ◽  
pp. 389-417 ◽  
Author(s):  
A. Andrada ◽  
M. Origlia
2019 ◽  
Vol 31 (3) ◽  
pp. 563-578
Author(s):  
Marcos Origlia

Abstract We study Lie algebras of type I, that is, a Lie algebra {\mathfrak{g}} where all the eigenvalues of the operator {\operatorname{ad}_{X}} are imaginary for all {X\in\mathfrak{g}} . We prove that the Morse–Novikov cohomology of a Lie algebra of type I is trivial for any closed 1-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular, we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some 6-dimensional Lie groups of type I admitting left invariant LCS structures in order to produce compact solvmanifolds equipped with an invariant LCS structure.


2017 ◽  
Vol 4 (1) ◽  
pp. 37-42
Author(s):  
Hiroshi Sawai

Abstract The purpose of this paper is to prove that there exists a lattice on a certain solvable Lie group and construct a six-dimensional locally conformal Kähler solvmanifold with non-parallel Lee form.


2012 ◽  
Vol 09 (07) ◽  
pp. 1250057 ◽  
Author(s):  
DOBRINKA GRIBACHEVA

A Riemannian manifold M with an integrable almost product structure P is called a Riemannian product manifold. Our investigations are on the manifolds (M, P, g) of the largest class of Riemannian product manifolds, which is closed with respect to the group of conformal transformations of the metric g. This class is an analogue of the class of locally conformal Kähler manifolds in almost Hermitian geometry. In the present paper we study a natural connection D on (M, P, g) (i.e. DP = Dg = 0). We find necessary and sufficient conditions, the curvature tensor of D to have properties similar to the Kähler tensor in Hermitian geometry. We pay attention to the case when D has a parallel torsion. We establish that the Weyl tensors for the connection D and the Levi-Civita connection coincide as well as the invariance of the curvature tensor of D with respect to the usual conformal transformation. We consider the case when D is a flat connection. We construct an example of the considered manifold by a Lie group where D is a flat connection with non-parallel torsion.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 90 ◽  
Author(s):  
Giovanni Bazzoni ◽  
Alberto Raffero

Motivated by known results in locally conformal symplectic geometry, we study different classes of G 2 -structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G 2 -structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G 2 -structures.


2010 ◽  
Vol 270 (1-2) ◽  
pp. 179-187 ◽  
Author(s):  
Maurizio Parton ◽  
Victor Vuletescu

1995 ◽  
Vol 18 (2) ◽  
pp. 331-340
Author(s):  
M. Hasan shahid ◽  
A. Sharfuddin

The study ofCR-submanifolds of a Kähler manifold was initiated by Bejancu [1]. Since then many papers have appeared onCR-submanifolds of a Kähler manifold. Also, it has been studied that generic submanifolds of Kähler manifolds [2] are generalisations of holomorphic submanifolds, totally real submanifolds andCR-submanifolds of Kähler manifolds. On the other hand, many examplesC2of generic surfaces in which are notCR-submanifolds have been given by Chen [3] and this leads to the present paper where we obtain some necessary conditions for a generic submanifolds in a locally conformal Kähler manifold with four canonical strucrures, denoted byP,F,tandf, to have parallelP,Fandt. We also prove that for a generic submanifold of a locally conformal Kähler manifold,Fis parallel ifftis parallel.


Sign in / Sign up

Export Citation Format

Share Document