solvable lie group
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 77 (1) ◽  
Author(s):  
Ameer Al-Abayechi ◽  
Ágota Figula

AbstractIn this paper we deal with the class $$\mathcal {C}$$ C of decomposable solvable Lie groups having dimension six. We determine those Lie groups in $$\mathcal {C}$$ C and their subgroups which are the multiplication groups Mult(L) and the inner mapping groups Inn(L) for three-dimensional connected simply connected topological loops L. This result completes the classification of the at most 6-dimensional solvable multiplication Lie groups of the loops L. Moreover, we obtain that every at most 3-dimensional connected topological proper loop having a solvable Lie group of dimension at most six as its multiplication group is centrally nilpotent of class two.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenfei Xi ◽  
Menachem Shlossberg

Abstract In this paper, we study topological groups having all closed subgroups (totally) minimal and we call such groups c-(totally) minimal. We show that a locally compact c-minimal connected group is compact. Using a well-known theorem of [P. Hall and C. R. Kulatilaka, A property of locally finite groups, J. Lond. Math. Soc. 39 1964, 235–239] and a characterization of a certain class of Lie groups, due to [S. K. Grosser and W. N. Herfort, Abelian subgroups of topological groups, Trans. Amer. Math. Soc. 283 1984, 1, 211–223], we prove that a c-minimal locally solvable Lie group is compact. It is shown that a topological group G is c-(totally) minimal if and only if G has a compact normal subgroup N such that G / N G/N is c-(totally) minimal. Applying this result, we prove that a locally compact group G is c-totally minimal if and only if its connected component c ⁢ ( G ) c(G) is compact and G / c ⁢ ( G ) G/c(G) is c-totally minimal. Moreover, a c-totally minimal group that is either complete solvable or strongly compactly covered must be compact. Negatively answering [D. Dikranjan and M. Megrelishvili, Minimality conditions in topological groups, Recent Progress in General Topology. III, Atlantis Press, Paris 2014, 229–327, Question 3.10 (b)], we find, in contrast, a totally minimal solvable (even metabelian) Lie group that is not compact.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


2020 ◽  
pp. 1-20
Author(s):  
RAJDIP PALIT ◽  
RIDDHI SHAH

Abstract For a locally compact group G, we study the distality of the action of automorphisms T of G on Sub G , the compact space of closed subgroups of G endowed with the Chabauty topology. For a certain class of discrete groups G, we show that T acts distally on Sub G if and only if T n is the identity map for some $n\in\mathbb N$ . As an application, we get that for a T-invariant lattice Γ in a simply connected nilpotent Lie group G, T acts distally on Sub G if and only if it acts distally on SubΓ. This also holds for any closed T-invariant co-compact subgroup Γ in G. For a lattice Γ in a simply connected solvable Lie group, we study conditions under which its automorphisms act distally on SubΓ. We construct an example highlighting the difference between the behaviour of automorphisms on a lattice in a solvable Lie group and that in a nilpotent Lie group. We also characterise automorphisms of a lattice Γ in a connected semisimple Lie group which act distally on SubΓ. For torsion-free compactly generated nilpotent (metrisable) groups G, we obtain the following characterisation: T acts distally on Sub G if and only if T is contained in a compact subgroup of Aut(G). Using these results, we characterise the class of such groups G which act distally on Sub G . We also show that any compactly generated distal group G is Lie projective.


Author(s):  
Jorge Lauret ◽  
Cynthia E Will

Abstract We study the natural functional $F=\frac {\operatorname {scal}^2}{|\operatorname {Ric}|^2}$ on the space of all non-flat left-invariant metrics on all solvable Lie groups of a given dimension $n$. As an application of properties of the beta operator, we obtain that solvsolitons are the only global maxima of $F$ restricted to the set of all left-invariant metrics on a given unimodular solvable Lie group, and beyond the unimodular case, we obtain the same result for almost-abelian Lie groups. Many other aspects of the behavior of $F$ are clarified.


2018 ◽  
Vol 9 (4) ◽  
pp. 247-277
Author(s):  
Lobna Abdelmoula ◽  
Ali Baklouti ◽  
Yasmine Bouaziz

Abstract Let G be a type 1 connected and simply connected solvable Lie group. The generalized moment map for π in {\widehat{G}} , the unitary dual of G, sends smooth vectors of the representation space of π to {{\mathcal{U}(\mathfrak{g})}^{*}} , the dual vector space of {\mathcal{U}(\mathfrak{g})} . The convex hull of the image of the generalized moment map for π is called its generalized moment set, denoted by {J(\pi)} . We say that {\widehat{G}} is generalized moment separable when the generalized moment sets differ for any pair of distinct irreducible unitary representations. Our main result in this paper provides a second proof of the generalized moment separability theorem for G.


2017 ◽  
Vol 4 (1) ◽  
pp. 37-42
Author(s):  
Hiroshi Sawai

Abstract The purpose of this paper is to prove that there exists a lattice on a certain solvable Lie group and construct a six-dimensional locally conformal Kähler solvmanifold with non-parallel Lee form.


2016 ◽  
Vol 08 (02) ◽  
pp. 273-285 ◽  
Author(s):  
Hisashi Kasuya

For a lattice [Formula: see text] of a simply connected solvable Lie group [Formula: see text], we describe the analytic germ in the variety of representations of [Formula: see text] at the trivial representation as an analytic germ which is linearly embedded in the analytic germ associated with the nilpotent Lie algebra determined by [Formula: see text]. By this description, under certain assumption, we study the singularity of the analytic germ in the variety of representations of [Formula: see text] at the trivial representation by using the Kuranishi space construction. By a similar technique, we also study deformations of holomorphic structures of trivial vector bundles over complex parallelizable solvmanifolds.


Sign in / Sign up

Export Citation Format

Share Document