An ergodic theorem of a parabolic Anderson model driven by Lévy noise

2011 ◽  
Vol 6 (6) ◽  
pp. 1147-1183
Author(s):  
Yong Liu ◽  
Jianglun Wu ◽  
Fengxia Yang ◽  
Jianliang Zhai
2005 ◽  
Vol 132 (3) ◽  
pp. 321-355 ◽  
Author(s):  
M. Cranston ◽  
T. S. Mountford ◽  
T. Shiga

2016 ◽  
Vol 36 (3) ◽  
pp. 740-752 ◽  
Author(s):  
Xianghua ZHANG ◽  
Fu CHEN ◽  
Ke WANG ◽  
Hong DU

2015 ◽  
Vol 15 (02) ◽  
pp. 1550011
Author(s):  
Gabriel Deugoué ◽  
Mamadou Sango

We establish the existence, uniqueness and approximation of the strong solutions for the stochastic 3D LANS-α model driven by a non-Gaussian Lévy noise. Moreover, we also study the stability of solutions. In particular, we prove that under some conditions on the forcing terms, the strong solution converges exponentially in the mean square and almost surely exponentially to the stationary solution.


2014 ◽  
Vol 233 ◽  
pp. 480-493 ◽  
Author(s):  
Ling Bai ◽  
Jingshi Li ◽  
Kai Zhang ◽  
Wenju Zhao

2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Xia Chen ◽  
Yaozhong Hu ◽  
David Nualart ◽  
Samy Tindel

Sign in / Sign up

Export Citation Format

Share Document