scholarly journals A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study

Author(s):  
Marly F. J. A. van der Lubbe ◽  
Akshayaa Vaidyanathan ◽  
Marjolein de Wit ◽  
Elske L. van den Burg ◽  
Alida A. Postma ◽  
...  

Abstract Purpose This study investigated the feasibility of a new image analysis technique (radiomics) on conventional MRI for the computer-aided diagnosis of Menière’s disease. Materials and methods A retrospective, multicentric diagnostic case–control study was performed. This study included 120 patients with unilateral or bilateral Menière’s disease and 140 controls from four centers in the Netherlands and Belgium. Multiple radiomic features were extracted from conventional MRI scans and used to train a machine learning-based, multi-layer perceptron classification model to distinguish patients with Menière’s disease from controls. The primary outcomes were accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the classification model. Results The classification accuracy of the machine learning model on the test set was 82%, with a sensitivity of 83%, and a specificity of 82%. The positive and negative predictive values were 71%, and 90%, respectively. Conclusion The multi-layer perceptron classification model yielded a precise, high-diagnostic performance in identifying patients with Menière’s disease based on radiomic features extracted from conventional T2-weighted MRI scans. In the future, radiomics might serve as a fast and noninvasive decision support system, next to clinical evaluation in the diagnosis of Menière’s disease.

2020 ◽  
pp. 019459982094064
Author(s):  
Matthew Shew ◽  
Helena Wichova ◽  
Andres Bur ◽  
Devin C. Koestler ◽  
Madeleine St Peter ◽  
...  

Objective Diagnosis and treatment of Ménière’s disease remains a significant challenge because of our inability to understand what is occurring on a molecular level. MicroRNA (miRNA) perilymph profiling is a safe methodology and may serve as a “liquid biopsy” equivalent. We used machine learning (ML) to evaluate miRNA expression profiles of various inner ear pathologies to predict diagnosis of Ménière’s disease. Study Design Prospective cohort study. Setting Tertiary academic hospital. Subjects and Methods Perilymph was collected during labyrinthectomy (Ménière’s disease, n = 5), stapedotomy (otosclerosis, n = 5), and cochlear implantation (sensorineural hearing loss [SNHL], n = 9). miRNA was isolated and analyzed with the Affymetrix miRNA 4.0 array. Various ML classification models were evaluated with an 80/20 train/test split and cross-validation. Permutation feature importance was performed to understand miRNAs that were critical to the classification models. Results In terms of miRNA profiles for conductive hearing loss versus Ménière’s, 4 models were able to differentiate and identify the 2 disease classes with 100% accuracy. The top-performing models used the same miRNAs in their decision classification model but with different weighted values. All candidate models for SNHL versus Ménière’s performed significantly worse, with the best models achieving 66% accuracy. Ménière’s models showed unique features distinct from SNHL. Conclusions We can use ML to build Ménière’s-specific prediction models using miRNA profile alone. However, ML models were less accurate in predicting SNHL from Ménière’s, likely from overlap of miRNA biomarkers. The power of this technique is that it identifies biomarkers without knowledge of the pathophysiology, potentially leading to identification of novel biomarkers and diagnostic tests.


2021 ◽  
Vol 70 (4) ◽  
Author(s):  
Arnaud ATTYÉ ◽  
Raphaele QUATRE ◽  
Michael ELIEZER ◽  
Georges DUMAS ◽  
Flavio PEROTTINO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document