On the existence in Gevrey classes of local solutions to the Cauchy problem for nonlinear hyperbolic systems with Hölder continuous coefficients

2006 ◽  
Vol 52 (2) ◽  
pp. 303-315
Author(s):  
Kunihiko Kajitani ◽  
Yasuo Yuzawa
2004 ◽  
Vol 01 (04) ◽  
pp. 643-689 ◽  
Author(s):  
PHILIPPE G. LEFLOCH

For nonlinear hyperbolic systems of partial differential equations in one-space dimension (in either conservative or non-conservative form) we introduce a geometric framework in which solutions are sought as (continuous) parametrized graphs(t,s) ↦ (X,U)(t,s) satisfying ∂sX ≥ 0, rather than (discontinuous) functions (t,x) ↦ u(t,x). On one hand, we generalize an idea by Dal Maso, LeFloch, and Murat who used a family of traveling wave profiles to define non-conservative products, and we define the notion of graph solution subordinate to a family of Riemann graphs. The latter naturally encodes the graph of the solution to the Riemann problem, which should be determined from an augmented model taking into account small-scale physics and providing an internal structure to the shock waves. In a second definition, we write an evolution equation on the graphs directly and we introduce the notion of graph solution subordinate to a diffusion matrix, which merges together the hyperbolic equations (in the "non-vertical" parts of the graphs) with the traveling wave equation of the augmented model (in the "vertical" parts). We consider the Cauchy problem within the class of graph solutions. The graph solution to the Cauchy problem is constructed by completion of the discontinuities of the entropy solution. The uniqueness is established by applying a general uniqueness theorem due to Baiti, LeFloch, and Piccoli. The proposed geometric framework illustrates the importance of the uniform distance between graphs to deal with solutions of nonlinear hyperbolic problems.


2021 ◽  
Vol 18 (03) ◽  
pp. 701-728
Author(s):  
Huali Zhang

We prove the local existence, uniqueness and stability of local solutions for the Cauchy problem of two-dimensional compressible Euler equations, where the initial data of velocity, density, specific vorticity [Formula: see text] and the spatial derivative of specific vorticity [Formula: see text].


Author(s):  
Lee Da-tsin(Li Ta-tsien) ◽  
Shi Jia-hong

SynopsisIn this paper, the existence of global smooth solutions and the formation of singularities of solutions for strictly hyperbolic systems with general eigenvalues are discussed for the Cauchy problem with essentially periodic small initial data or nonperiodic initial data. A result of Klainerman and Majda is thus extended to the general case.


Sign in / Sign up

Export Citation Format

Share Document