compressible euler
Recently Published Documents


TOTAL DOCUMENTS

588
(FIVE YEARS 143)

H-INDEX

43
(FIVE YEARS 4)

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Rong Shen ◽  
Yong Wang

In this paper, we consider the three-dimensional Cauchy problem of the nonisentropic compressible Euler equations with relaxation. Following the method of Wu et al. (2021, Adv. Math. Phys. Art. ID 5512285, pp. 1–13), we show the existence and uniqueness of the global small H k k ⩾ 3 solution only under the condition of smallness of the H 3 norm of the initial data. Moreover, we use a pure energy method with a time-weighted argument to prove the optimal L p – L q 1 ⩽ p ⩽ 2 , 2 ⩽ q ⩽ ∞ -type decay rates of the solution and its higher-order derivatives.


2021 ◽  
Vol 8 (3) ◽  
pp. 1-30
Author(s):  
Matthias Maier ◽  
Martin Kronbichler

We discuss the efficient implementation of a high-performance second-order collocation-type finite-element scheme for solving the compressible Euler equations of gas dynamics on unstructured meshes. The solver is based on the convex-limiting technique introduced by Guermond et al. (SIAM J. Sci. Comput. 40, A3211–A3239, 2018). As such, it is invariant-domain preserving ; i.e., the solver maintains important physical invariants and is guaranteed to be stable without the use of ad hoc tuning parameters. This stability comes at the expense of a significantly more involved algorithmic structure that renders conventional high-performance discretizations challenging. We develop an algorithmic design that allows SIMD vectorization of the compute kernel, identify the main ingredients for a good node-level performance, and report excellent weak and strong scaling of a hybrid thread/MPI parallelization.


Sign in / Sign up

Export Citation Format

Share Document