Multi-Objective Particle Swarm Optimization (MOPSO) for a Distributed Energy System Integrated with Energy Storage

2019 ◽  
Vol 28 (6) ◽  
pp. 1221-1235 ◽  
Author(s):  
Jian Zhang ◽  
Heejin Cho ◽  
Pedro J. Mago ◽  
Hongguang Zhang ◽  
Fubin Yang
Author(s):  
Jian Zhang ◽  
Heejin Cho ◽  
Hongguang Zhang ◽  
Fubin Yang

As a promising approach for sustainable development, the distributed energy system receives increasing attention worldwide and has become a key topic explored by researchers in the areas of building energy systems and smart grid. In line with this research trend, this paper presents a case study of designing an integrated distributed energy system including photovoltaics (PV), combined cooling heating and power (CCHP) and electric and thermal energy storage for commercial buildings (i.e., a hospital and a large hotel). The subsystems are modeled individually and integrated based on a proposed control strategy to meet the electric and thermal energy demand of a building. A multi-objective particle swarm optimization (PSO) is performed to determine the optimal size of each subsystem with objectives to minimize carbon dioxide emissions and payback period. The results demonstrate that the proposed method can be effectively utilized to obtain an optimized design of distributed energy systems that can minimize environmental and economic impacts for different buildings.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1334
Author(s):  
Mohamed R. Torkomany ◽  
Hassan Shokry Hassan ◽  
Amin Shoukry ◽  
Ahmed M. Abdelrazek ◽  
Mohamed Elkholy

The scarcity of water resources nowadays lays stress on researchers to develop strategies aiming at making the best benefit of the currently available resources. One of these strategies is ensuring that reliable and near-optimum designs of water distribution systems (WDSs) are achieved. Designing WDSs is a discrete combinatorial NP-hard optimization problem, and its complexity increases when more objectives are added. Among the many existing evolutionary algorithms, a new hybrid fast-convergent multi-objective particle swarm optimization (MOPSO) algorithm is developed to increase the convergence and diversity rates of the resulted non-dominated solutions in terms of network capital cost and reliability using a minimized computational budget. Several strategies are introduced to the developed algorithm, which are self-adaptive PSO parameters, regeneration-on-collision, adaptive population size, and using hypervolume quality for selecting repository members. A local search method is also coupled to both the original MOPSO algorithm and the newly developed one. Both algorithms are applied to medium and large benchmark problems. The results of the new algorithm coupled with the local search are superior to that of the original algorithm in terms of different performance metrics in the medium-sized network. In contrast, the new algorithm without the local search performed better in the large network.


Sign in / Sign up

Export Citation Format

Share Document