Ore genesis of Badi copper deposit, northwest Yunnan Province, China: evidence from geology, fluid inclusions, and sulfur, hydrogen and oxygen isotopes

2017 ◽  
Vol 37 (4) ◽  
pp. 559-570
Author(s):  
Hejun Yin ◽  
Jianguo Huang ◽  
Tao Ren
2019 ◽  
Vol 35 (5) ◽  
pp. 1463-1477
Author(s):  
BIAN XiaoLong ◽  
◽  
ZHANG Jing ◽  
WANG JiaLin ◽  
LIU ChunFa ◽  
...  

1994 ◽  
Vol 89 (8) ◽  
pp. 1924-1938 ◽  
Author(s):  
Jeffrey A. Deen ◽  
Robert O. Rye ◽  
James L. Munoz ◽  
John W. Drexler

Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 99 ◽  
Author(s):  
Shunda Li ◽  
Xuebing Zhang ◽  
Lingling Gao

The Jinchang gold–copper deposit is located in Eastern Heilongjiang Province,Northeastern China. The orebody comprises primarily hydrothermal breccias, quartz veins, anddisseminated ores within granite, diorite, and granodiorite. Three paragenetic stages are identified:early quartz–pyrite–arsenopyrite (Stage 1), quartz–pyrite–chalcopyrite (Stage 2), and latequartz–pyrite–galena–sphalerite (Stage 3). Gold was deposited during all three stages and Stage 1was the major gold-producing stage. Copper is associated with the mineralization but has loweconomic value. Fluid inclusions (FIs) within the deposit are liquid-rich aqueous, vapor-rich aqueous,and daughter-mineral-bearing types. Microthermometric data for the FIs reveal decreasinghomogenization temperatures (Th) and salinities of the ore-forming fluids over time. The Th forStages 1–3 of the mineralization are 421–479, 363–408, and 296–347 °C, respectively. Stage 1 fluidsin vapor-rich and daughter-mineral-bearing inclusions have salinities of 5.7–8.7 and 49.8–54.4 wt%NaCl equivalent, respectively. Stage 2 fluids in vapor-rich, liquid-rich, and daughter-mineral-bearinginclusions have salinities of 1.2–5.4, 9.5–16.0, and 43.3–48.3 wt% NaCl, respectively. Stage 3 fluids inliquid-rich and daughter-mineral-bearing inclusions have salinities of 7.9–12.6 and 38.3–42.0 wt% NaClequivalent, respectively. The estimated trapping pressures are 160–220 bar, corresponding toan entrapment depth of 1.6–1.2 km in the paleo-water table. Oxygen and hydrogen isotope data(δ18OV-SMOW = 8.6‰ to 11.4‰; δDV-SMOW = −92.2‰ to −72.1‰) suggest that the ore-forming fluidswere derived from magmatic fluids during the early stages of mineralization and subsequentlyincorporated meteoric water during the late stages. The sulfide minerals have δ34SVCDT values of0.2‰–3.5‰, suggesting that the sulfur has a magmatic origin. The Jinchang deposit is a typicalgold-rich gold–copper porphyry deposit.


Sign in / Sign up

Export Citation Format

Share Document