eastern tianshan
Recently Published Documents


TOTAL DOCUMENTS

309
(FIVE YEARS 118)

H-INDEX

34
(FIVE YEARS 7)

Author(s):  
Qigui Mao ◽  
Songjian Ao ◽  
Brian F. Windley ◽  
Zhiyong Zhang ◽  
Miao Sang ◽  
...  

To constrain the closure mechanism and time of the Paleo-Asian Ocean, we report new geochronological and geochemical data for Triassic granites along a NW−SE corridor from Eastern Tianshan to Beishan, NW China. Seven granites have U-Pb ages that young southwards from 245 Ma to 234 Ma in the Kanguer accretionary complex, to 237 Ma to 234 Ma in the eastern Central Tianshan block, to 229 Ma to 223 Ma in the Liuyuan accretionary complex. Granites in the Kanguer accretionary complex formed by fractional crystallization and are peraluminous, high-K, calc-alkaline, and crust-derived. They have very low MgO (Mg# = 6−9), Cr, and Ni contents, and their high εNd(t) (+3.40) and εHf(t) (+4.49 to +11.91) isotopes indicate that the Dananhu arc crust was juvenile. The Huaniushan pluton in the Liuyuan accretionary complex displays the geochemical signatures of both A1- and A2-type granites (Y/Nb = 0.32−3.39). All other granites in the Central Tianshan block and Liuyuan accretionary complex are aluminous A2-types with high K2O+Na2O, Al, rare earth elements (REE), Zr+Nb+Y, Ga, Fe/Mg, and Y/Nb and remarkable depletions of Eu, Ba, Nb, Ta, Sr, P, and Ti. They have a broad range of MgO (Mg# = 9−59), Cr, and Ni contents, Isr (0.70741−0.70945) values, negative εNd (t) (−2.98 to −1.14), and low to moderate εHf(t) (−1.22 to +7.78), which suggests a mixture of mantle and crustal components. These 245−223 Ma granitoids show marked Nb-Ta depletions that point to a subduction origin. Notable enrichments in Nd-Hf isotopes of Late Triassic granites are likely an indication of collision. Integration with previous data enables us to conclude that the delamination of an oceanic slab and mantle upwelling induced partial melting of thickened arc crust during a tectonic transition from a multiple supra-subduction margin to a collisional setting in the Late Triassic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259985
Author(s):  
Yue Li ◽  
Chengrui Zhang ◽  
Zexian Huang ◽  
Huan Liu ◽  
Meng Ren ◽  
...  

Situated at a geographic crossroads, the eastern Tianshan Mountain region in northwest China is crucial to understanding various economic, social, and cultural developments on the Eurasian Steppes. One promising way to gain a better knowledge of ancient subsistence economy, craft production, and social change in the eastern Tianshan Mountain region is to study the artifact assemblages from archaeological contexts. Here, we present an analysis of 488 worked animal bones from the large site of Shirenzigou (ca. 1300–1 BCE), to date the largest assemblage of this kind uncovered in the eastern Tianshan Mountain region. We classified these worked bones into six categories, including “ritual objects”, “ornaments”, “tools”, “worked astragali”, “warfare and mobility”, and “indeterminate”. The identification of animal species and skeletal elements indicates that worked bones from Shirenzigou are characterized by a predominance of caprine products, particularly worked astragali, which is consistent with the large proportion of caprine fragments found in animal remains associated with food consumption. This demonstrates the contribution of caprine pastoralism to bone working activities at Shirenzigou. The making of most worked bones does not appear to have required advanced or specialized skills. Considering the absence of dedicated bone working space, alongside the variability in raw material selection and in dimensions of certain types of artifacts, we infer that worked bone production at Shirenzigou was not standardized. In terms of raw material selection and mode of production, Shirenzigou differed from their settled, farming counterparts in the Yellow River valley of northern China. In addition, along with the evidence for violence and horseback riding, the increasing use of bone artifacts associated with warfare and mobility during the late occupation phase of Shirenzigou reflects growing social instability and implies the likely emergence of single mounted horsemen, equipped with light armors, in the region during the late first millennium BCE. Our results provide new insights into animal resource exploitation and changing lifeways of early pastoral societies in the eastern Tianshan Mountain region, expanding our knowledge of the economic, social, and political milieu of late Bronze Age and early Iron Age eastern Eurasia.


2021 ◽  
Author(s):  
Zhiyuan He ◽  
Bo Wang ◽  
Stijn Glorie ◽  
Wenbo Su ◽  
Xinghua Ni ◽  
...  

2021 ◽  
pp. 104596
Author(s):  
Guochao Zhou ◽  
Yuwang Wang ◽  
Yu Shi ◽  
Hongjing Xie ◽  
Boran Guo

2021 ◽  
pp. SP516-2020-248
Author(s):  
Yihao Liu ◽  
Yun Zhao ◽  
Chunji Xue ◽  
Liang Yu ◽  
Haixia Chu ◽  
...  

AbstractThe temporal-spatial relationships of porphyry and orogenic gold mineralization in the Eastern Tianshan Orogenic Belt are ambiguous. The newly-discovered Changshagou deposit in this belt contains both porphyry and orogenic gold mineralization, which are characterized by polymetallic-sulfide veinlets and quartz-pyrite veins, respectively. Fluid inclusions in the porphyry mineralization episode were trapped at 290–340 °C with salinities of 3.0–8.0 wt.% NaClequiv. The homogenization temperatures and salinities in the orogenic mineralization episode range from 240 to 300 °C and 1.0–5.0 wt.% NaClequiv. Coexisting V-type and L-type fluid inclusions with similar homogenization temperatures are indicative of fluid immiscibility. The δ18Ow and δDw values range from 7.6 to 9.1 ‰ and −70.9 to −84.0 ‰ in the porphyry mineralization episode, and from 6.4 to 7.1 ‰ and −65.7 to −72.1 ‰ in the orogenic mineralization episode, overlapping magmatic and metamorphic ranges, respectively. The pyrite δ34S values range from 3.5 to 4.9 ‰, falls into the magmatic range. Pyrite in porphyry and orogenic mineralization episodes yield Re-Os isotopes ages of 269.1±2.9 Ma and 257.4±2.4 Ma. The porphyry and orogenic gold mineralizations are genetically associated with the quartz syenite porphyry and Kanggur strike-slip shear activity, respectively.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5635584


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Ping Li ◽  
Ting Liang ◽  
Fan Huang ◽  
Tongyang Zhao ◽  
Zhixin Zhu ◽  
...  

The eastern Tianshan metallogenic belt is an important molybdenum resource base in Xinjiang and is characterized by large-scale porphyry Mo deposits formed during the Triassic. The Tieling Cu-Mo porphyry deposit, which is situated in the western part of the eastern Tianshan metallogenic belt, was recently recognized as being related to Carboniferous granite porphyry. Three stages of hydrothermal mineralization were identified, including quartz+K-feldspar+pyrite±molybdenite±magnetite (stage I), quartz+molybdenite+pyrite+chalcopyrite (stage II), and quartz+pyrite±molybdenite±epidote (stage III). Fluid inclusion petrography and microthermometry analyses indicate the presence of gas-liquid inclusions with a H2O-NaCl composition. The ore-forming fluids have a characteristic temperature ranging from 157 to 262°C under stage II and 135 to 173°C under stage III, which correspond to salinities of 7.2-17.2 wt% NaCl equiv. and 5.9 to 9.6 wt% NaCl equiv., respectively. The hydrogen and oxygen isotope data indicate that the ore-forming fluids of the Tieling deposit were originally derived from magmatic hydrothermal fluids and then mixed with meteoric water. The sulfur isotope compositions indicate that the ore-forming materials were mainly derived from the Late Carboniferous felsic magma. Furthermore, zircon U-Pb analysis of ore-bearing granite porphyry yields a concordant age of 298.4 ± 0.7   Ma , indicating that the Tieling Cu-Mo deposit formed during the Late Carboniferous and differed from that processed under pre-Early Carboniferous and Triassic mineralization in the eastern Tianshan metallogenic belt. These results also indicate that the Tieling porphyry deposit was formed in the transition condition between subduction-related accretion and postcollisional orogeny, and it should be given more attention in prospect evaluations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dong Xue ◽  
Xiao-Hua Deng ◽  
Leon Bagas ◽  
Xu-An Chen ◽  
Yan-Shuang Wu ◽  
...  

The eastern Tianshan Terrane is a highly prospective zone that contains several porphyry Cu–Mo, VMS Cu–Zn, magmatic Cu–Ni, epithermal and orogenic Au deposits. However, few attention has been paid to tungsten deposits. Of these, the source and evolution of the mineralising fluids related to the skarn W deposits are poorly understood. The Heiyanshan W deposit is hosted by metamorphosed clastic and carbonate beds in the Mesoproterozoic Jianshanzi Formation deposited on a continental margin tectonic setting. The Jianshanzi Formation is intruded by biotite monzogranite that yield weighted 206Pb/238U age of 326.9 ± 1.6 Ma, which suggest that the Heiyanshan W deposit was formed in the Carboniferous. The mineralisation is hosted by a prograde hydrothermal altered zone represented by a garnet (–pyroxene) skarn, and retrograde skarn characterised by fine-grained scheelite. The paragenesis of the Heiyanshan mineralisation can be subdivided into prograde skarn stage, retrograde skarn stage, quartz-sulphide stage and quartz-calcite vein stage. The types of fluid inclusions recognised in the various minerals in the deposits are liquid-rich aqueous, vapour-rich aqueous, and daughter mineral-bearing. The homogenisation temperatures of fluid inclusions from the Heiyanshan deposit decrease from 290 ± 28°C in garnet, through 232 ± 31°C in scheelite, to 232 ± 36°C in quartz and 158 ± 15°C in non-mineralised calcite, which is typical of W-bearing skarn deposits worldwide. The δ18Owater values from the Heiyanshan deposit range from +4.7 to +6.6‰ in garnet, +1.3 to +1.9‰ in quartz and −6.1 to −4.4‰ in calcite. We have measured δD in fluid inclusions from different minerals, although these bulk analyses are just a mixture of the different FIA’s present in the sample. The δD values of fluid inclusions in garnet, quartz, and calcite are from −121 to −71‰, −84 to −75‰ and −101 to −82‰, respectively, also indicative of deep-sourced magmatic fluids mixed with meteoric water. The decrease in the homogenisation temperatures for the fluid inclusions at the Heiyanshan deposit is accompanied by a drop in salinity indicating that tungsten-bearing minerals precipitated during fluid mixing between magmatic fluids and meteoric water. We conclude that eastern Tianshan Terrane contains two pulse of tungsten metallogenic events of Late Carboniferous and Early Triassic.


Sign in / Sign up

Export Citation Format

Share Document