Borel Transform in the Class W of Quasi-entire Functions

2017 ◽  
Vol 12 (3) ◽  
pp. 571-587 ◽  
Author(s):  
Alexander P. Kerzhaev ◽  
Mikhail D. Kovalenko ◽  
Irina V. Menshova
2012 ◽  
Vol 110 (1) ◽  
pp. 111 ◽  
Author(s):  
Vinícius V. Fávaro ◽  
Ariosvaldo M. Jatobá

Let $E$ be a Banach space and $\Theta$ be a $\pi_{1}$-holomorphy type. The main purpose of this paper is to show that the Fourier-Borel transform is an algebraic isomorphism between the dual of the space ${\operatorname{Exp}}_{\Theta,A}^{k}(E)$ of entire functions on $E$ of order $k$ and $\Theta$-type strictly less than $A$ and the space ${\operatorname{Exp}}_{\Theta^{\prime},0,(\lambda (k) A)^{-1}}^{k^{\prime}}(E^{\prime})$ of entire functions on $E^{\prime}$ of order $k^{\prime}$ and $\Theta^{\prime}$-type less than or equal to $(\lambda(k)A)^{-1}$. The same is proved for the dual of the space ${\operatorname{Exp}}_{\Theta,A}^{k}(E)$ of entire functions on $E$ of order $k$ and $\Theta$-type less than or equal to $A$ and the space ${\operatorname{Exp}}_{\Theta^{\prime}, (\lambda(k)A)^{-1}}^{k^{\prime}}( E^{\prime})$ of entire functions on $E^{\prime}$ of order $k^{\prime}$ and $\Theta^{\prime}$-type strictly less than $(\lambda(k)A)^{-1}$. Moreover, the Fourier-Borel transform is proved to be a topological isomorphism in certain cases.


1984 ◽  
Vol 36 (6) ◽  
pp. 928-931
Author(s):  
V. Kh. Musoyan

2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.


Sign in / Sign up

Export Citation Format

Share Document