Rate of approximation of entire functions by a complete Dirichlet system

1984 ◽  
Vol 36 (6) ◽  
pp. 928-931
Author(s):  
V. Kh. Musoyan
2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


2004 ◽  
Vol 11 (3) ◽  
pp. 409-414
Author(s):  
C. Belingeri

Abstract A recursion formula for the coefficients of entire functions which are solutions of linear differential equations with polynomial coefficients is derived. Some explicit examples are developed. The Newton sum rules for the powers of zeros of a class of entire functions are constructed in terms of Bell polynomials.


Sign in / Sign up

Export Citation Format

Share Document