scholarly journals Uniqueness on entire functions and their nth order exact differences with two shared values

2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abhijit Banerjee ◽  
Arpita Roy

PurposeThe paper aims to build the relationship between an entire function of restricted hyper-order with its linear c-shift operator.Design/methodology/approachStandard methodology for papers in difference and shift operators and value distribution theory have been used.FindingsThe relation between an entire function of restricted hyper-order with its linear c-shift operator was found under the periphery of sharing a set of two small functions IM (ignoring multiplicities) when exponent of convergence of zeros is strictly less than its order. This research work is an improvement and extension of two previous papers.Originality/valueThis is an original research work.


2020 ◽  
Vol 101 (3) ◽  
pp. 453-465 ◽  
Author(s):  
XINLING LIU ◽  
RISTO KORHONEN

According to a conjecture by Yang, if $f(z)f^{(k)}(z)$ is a periodic function, where $f(z)$ is a transcendental entire function and $k$ is a positive integer, then $f(z)$ is also a periodic function. We propose related questions, which can be viewed as difference or differential-difference versions of Yang’s conjecture. We consider the periodicity of a transcendental entire function $f(z)$ when differential, difference or differential-difference polynomials in $f(z)$ are periodic. For instance, we show that if $f(z)^{n}f(z+\unicode[STIX]{x1D702})$ is a periodic function with period $c$, then $f(z)$ is also a periodic function with period $(n+1)c$, where $f(z)$ is a transcendental entire function of hyper-order $\unicode[STIX]{x1D70C}_{2}(f)<1$ and $n\geq 2$ is an integer.


2015 ◽  
Vol 93 (2) ◽  
pp. 248-259 ◽  
Author(s):  
TINGBIN CAO

The Brück conjecture states that if a nonconstant entire function $f$ with hyper-order ${\it\sigma}_{2}(f)\in [0,+\infty )\setminus \mathbb{N}$ shares one finite value $a$ (counting multiplicities) with its derivative $f^{\prime }$, then $f^{\prime }-a=c(f-a)$, where $c$ is a nonzero constant. The conjecture has been established for entire functions with order ${\it\sigma}(f)<+\infty$ and hyper-order ${\it\sigma}_{2}(f)<{\textstyle \frac{1}{2}}$. The purpose of this paper is to prove the Brück conjecture for the case ${\it\sigma}_{2}(f)=\frac{1}{2}$ by studying the infinite hyper-order solutions of the linear differential equations $f^{(k)}+A(z)f=Q(z)$. The shared value $a$ is extended to be a ‘small’ function with respect to the entire function $f$.


1973 ◽  
Vol 51 ◽  
pp. 123-130 ◽  
Author(s):  
Fred Gross ◽  
Chung-Chun Yang ◽  
Charles Osgood

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as left and right factors respe2tively, provided that f(z) is meromorphic and g(z) is entire (g may be meromorphic when f is rational). F(z) is said to be prime (pseudo-prime) if every factorization of the above form implies that one of the functions f and g is bilinear (a rational function). F is said to be E-prime (E-pseudo prime) if every factorization of the above form into entire factors implies that one of the functions f and g is linear (a polynomial). We recall here that an entire non-periodic function f is prime if and only if it is E-prime [5]. This fact will be useful in the sequel.


1995 ◽  
Vol 138 ◽  
pp. 169-177 ◽  
Author(s):  
Hong-Xun yi

For any set S and any entire function f letwhere each zero of f — a with multiplicity m is repeated m times in Ef(S) (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on 0 < r < ∞, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying .


1995 ◽  
Vol 118 (3) ◽  
pp. 527-542 ◽  
Author(s):  
A. C. Offord

SummaryThis is a study of entire functions whose coefficients are independent random variables. When the space of such functions is symmetric it is shown that independence of the coefficients alone is sufficient to ensure that almost all such functions will, for large z, be large except in certain small neighbourhoods of the zeros called pits. In each pit the function takes every not too large value and these pits have a certain uniform distribution.


2013 ◽  
Vol 21 (2) ◽  
pp. 35-52
Author(s):  
Benharrat Belaïdi ◽  
Habib Habib

Abstract In this paper, we investigate the order and the hyper-order of growth of solutions of the linear differential equation where n≥2 is an integer, Aj (z) (≢0) (j = 1,2) are entire functions with max {σ A(j) : (j = 1,2} < 1, Q (z) = qmzm + ... + q1z + q0 is a nonoonstant polynomial and a1, a2 are complex numbers. Under some conditions, we prove that every solution f (z) ≢ 0 of the above equation is of infinite order and hyper-order 1.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1966 ◽  
Vol 15 (2) ◽  
pp. 121-123 ◽  
Author(s):  
S. L. Segal

Let f(z) be an entire function, M(r) the maximum of f(z) on ∣z∣=r, and λ>1. Let Eλ=Eλ(f{z:log∣f(z)≦(1-λ)log(M∣z∣)}, and denote the density of Eλbywhere m is planar measure.


Sign in / Sign up

Export Citation Format

Share Document