On the Rank of a Matrix

Resonance ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 575-578
Author(s):  
S. Kesavan
Keyword(s):  
2018 ◽  
Vol 33 (3) ◽  
pp. e3102
Author(s):  
Elaheh Talebanpour Bayat ◽  
Bahram Hemmateenejad ◽  
Morteza Akhond ◽  
Mohammad Mahdi Bordbar ◽  
Knut Baumann

2022 ◽  
Vol 23 (1) ◽  
pp. 1-35
Author(s):  
Anuj Dawar ◽  
Gregory Wilsenach

Fixed-point logic with rank (FPR) is an extension of fixed-point logic with counting (FPC) with operators for computing the rank of a matrix over a finit field. The expressive power of FPR properly extends that of FPC and is contained in P, but it is not known if that containment is proper. We give a circuit characterization for FPR in terms of families of symmetric circuits with rank gates, along the lines of that for FPC given by Anderson and Dawar in 2017. This requires the development of a broad framework of circuits in which the individual gates compute functions that are not symmetric (i.e., invariant under all permutations of their inputs). This framework also necessitates the development of novel techniques to prove the equivalence of circuits and logic. Both the framework and the techniques are of greater generality than the main result.


2019 ◽  
Vol 35 ◽  
pp. 285-296
Author(s):  
Elena Rubei

An interval matrix is a matrix whose entries are intervals in $\R$. This concept, which has been broadly studied, is generalized to other fields. Precisely, a rational interval matrix is defined to be a matrix whose entries are intervals in $\Q$. It is proved that a (real) interval $p \times q$ matrix with the endpoints of all its entries in $\Q$ contains a rank-one matrix if and only if it contains a rational rank-one matrix, and contains a matrix with rank smaller than $\min\{p,q\}$ if and only if it contains a rational matrix with rank smaller than $\min\{p,q\}$; from these results and from the analogous criterions for (real) inerval matrices, a criterion to see when a rational interval matrix contains a rank-one matrix and a criterion to see when it is full-rank, that is, all the matrices it contains are full-rank, are deduced immediately. Moreover, given a field $K$ and a matrix $\al$ whose entries are subsets of $K$, a criterion to find the maximal rank of a matrix contained in $\al$ is described.


1934 ◽  
Vol 41 (10) ◽  
pp. 607-608
Author(s):  
W. H. Metzler
Keyword(s):  

1960 ◽  
Vol 34 (1) ◽  
pp. 33 ◽  
Author(s):  
Stephen A. Andrea ◽  
Edward T. Wong
Keyword(s):  

Geophysics ◽  
2020 ◽  
pp. 1-60
Author(s):  
Ouyang Shao ◽  
Lingling Wang ◽  
Xiangyun Hu ◽  
Zhidan Long

Because there are many similar geological structures underground, seismic profiles have an abundance of self-repeating patterns. Thus, we can divide a seismic profile into groups of blocks with similar seismic structure. The matrix formed by stacking together similar blocks in each group should be of low rank. Hence, we can transfer the seismic denoising problem to a serial of low-rank matrix approximation (LRMA) problem. The LRMA-based model commonly adopts the nuclear norm as a convex substitute of the rank of a matrix. However, the nuclear norm minimization (NNM) shrinks the different rank components equally and may cause some biases in practice. Recently introduced truncated nuclear norm (TNN) has been proven to more accurately approximate the rank of a matrix, which is given by the sum of the set of smallest singular values. Based on this, we propose a novel denoising method using truncated nuclear norm minimization (TNNM). The objective function of this method consists of two terms, the F-norm data fidelity and a truncated nuclear norm regularization. We present an efficient two-step iterative algorithm to solve this objective function. Then, we apply the proposed TNNM algorithm to groups of blocks with similar seismic structure, and aggregate all resulting denoised blocks to get the denoised seismic data. We update the denoised results during each iteration to gradually attenuate the heavy noise. Numerical experiments demonstrate that, compared with FX-Decon, the curvelet, and the NNM-based methods, TNNM not only attenuates noise more effectively even when the SNR is as low as -10 dB and seismic data have complex structures, but also accurately preserves the seismic structures without inducing Gibbs artifacts.


Sign in / Sign up

Export Citation Format

Share Document