Algorithm to compute term rank of a matrix based on the construction a bipartite graph

Author(s):  
Huu Loc Pham
1958 ◽  
Vol 10 ◽  
pp. 57-65 ◽  
Author(s):  
H. J. Ryser

This paper continues a study appearing in (5) of the combinatorial properties of a matrix A of m rows and n columns, all of whose entries are 0's and 1's. Let the sum of row i of A be denoted by r i and let the sum of column i of A be noted by st. We call R = (r 1, … , rm) the row sum vector and S = (s 1, … , s n) the column sum vector of A. The vectors R and S determine a class consisting of all (0, 1)-matrices of m rows and n columns, with row sum vector R and column sum vector S. Simple arithmetic properties of R and S are necessary and sufficient for the existence of a class (1 ; 5).


2012 ◽  
Vol 436 (6) ◽  
pp. 1632-1643 ◽  
Author(s):  
Richard A. Brualdi ◽  
Kathleen P. Kiernan ◽  
Seth A. Meyer ◽  
Michael W. Schroeder
Keyword(s):  

1959 ◽  
Vol 2 (3) ◽  
pp. 159-162 ◽  
Author(s):  
A.L. Dulmage ◽  
N.S. Mendelsohn

A bipartite graph is a system consisting of two sets of vertices S and T and a set of edges K, each edge joining a vertex of S to a vertex of T. A set U of edges of K is said to be independent if no two edges of U have a vertex in common. The largest possible number of independent edges has been variously called the exterior dimension [3], term rank [4, 5, 7], etc. This number is the same as the smallest number of vertices in a set W such that each edge of K has at least one of its vertices in W. The edges of a finite bipartite graph can be represented as a set of cells in a matrix as follows. If S = a1, a2, …, an T = b1, b2, … bm, the edges of K are represented by some of the cells of an n by m matrix as follows: if K contains the edge joining ai to bj then the (i, j)th cell of the matrix represents this edge. It is convenient sometimes to represent the set K by a matrix A with real entries aij where aij = 0 if ai is not joined to bj in K and aij > 0 if ai is joined to bj in K. Any non-null graph K will have infinitely many matrix representations.


Filomat ◽  
2014 ◽  
Vol 28 (9) ◽  
pp. 1827-1833
Author(s):  
Seok-Zun Song ◽  
Seong-Hee Heo

The zero-term rank of a matrix A over a semiring S is the least number of lines (rows or columns) needed to include all the zero entries in A. In this paper, we characterize linear operators that preserve the sets of matrix ordered pairs which satisfy extremal properties with respect to zero-term rank inequalities of matrices over nonbinary Boolean algebras.


2018 ◽  
Vol 9 (12) ◽  
pp. 2147-2152
Author(s):  
V. Raju ◽  
M. Paruvatha vathana

10.37236/1748 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Nagi H. Nahas

The best lower bound known on the crossing number of the complete bipartite graph is : $$cr(K_{m,n}) \geq (1/5)(m)(m-1)\lfloor n/2 \rfloor \lfloor(n-1)/2\rfloor$$ In this paper we prove that: $$cr(K_{m,n}) \geq (1/5)m(m-1)\lfloor n/2 \rfloor \lfloor (n-1)/2 \rfloor + 9.9 \times 10^{-6} m^2n^2$$ for sufficiently large $m$ and $n$.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


Sign in / Sign up

Export Citation Format

Share Document