Construction of LCD and new quantum codes from cyclic codes over a finite non-chain ring

Author(s):  
Habibul Islam ◽  
Om Prakash
2014 ◽  
Vol 12 (06) ◽  
pp. 1450042 ◽  
Author(s):  
Mohammad Ashraf ◽  
Ghulam Mohammad

Let R = F3 + vF3 be a finite commutative ring, where v2 = 1. It is a finite semi-local ring, not a chain ring. In this paper, we give a construction for quantum codes from cyclic codes over R. We derive self-orthogonal codes over F3 as Gray images of linear and cyclic codes over R. In particular, we use two codes associated with a cyclic code over R of arbitrary length to determine the parameters of the corresponding quantum code.


2016 ◽  
pp. 39-49
Author(s):  
Mustafa Sari ◽  
Irfan Siap

In this study, we introduce a new Gray map which preserves the orthogonality from the chain ring F_2 [u] / (u^s ) to F^s_2 where F_2 is the finite field with two elements. We also give a condition of the existence for cyclic codes of odd length containing its dual over the ring F_2 [u] / (u^s ) . By taking advantage of this Gray map and the structure of the ring, we obtain two classes of binary quantum error correcting (QEC) codes and we finally illustrate our results by presenting some examples with good parameters.


Author(s):  
Brahim Boudine ◽  
Jamal Laaouine ◽  
Mohammed Elhassani Charkani

2015 ◽  
Vol 13 (08) ◽  
pp. 1550063 ◽  
Author(s):  
Jian Gao

We give a construction of quantum codes over [Formula: see text] from cyclic codes over a finite non-chain ring [Formula: see text], where [Formula: see text], p is a prime, [Formula: see text] and [Formula: see text].


2014 ◽  
Vol 28 (06) ◽  
pp. 1450017 ◽  
Author(s):  
RUIHU LI ◽  
GEN XU ◽  
LUOBIN GUO

In this paper, we discuss two problems on asymmetric quantum error-correcting codes (AQECCs). The first one is on the construction of a [[12, 1, 5/3]]2 asymmetric quantum code, we show an impure [[12, 1, 5/3 ]]2 exists. The second one is on the construction of AQECCs from binary cyclic codes, we construct many families of new asymmetric quantum codes with dz> δ max +1 from binary primitive cyclic codes of length n = 2m-1, where δ max = 2⌈m/2⌉-1 is the maximal designed distance of dual containing narrow sense BCH code of length n = 2m-1. A number of known codes are special cases of the codes given here. Some of these AQECCs have parameters better than the ones available in the literature.


2016 ◽  
Vol 15 (11) ◽  
pp. 4489-4500 ◽  
Author(s):  
Yongsheng Tang ◽  
Shixin Zhu ◽  
Xiaoshan Kai ◽  
Jian Ding

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ram Krishna Verma ◽  
Om Prakash ◽  
Ashutosh Singh ◽  
Habibul Islam

<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \ell $\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}_{p^m} $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M5">\begin{document}$ p^{m} $\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id="M6">\begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id="M7">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id="M8">\begin{document}$ p^{2^{\ell} m} $\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id="M10">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>


2020 ◽  
Vol 24 (3) ◽  
pp. 486-490 ◽  
Author(s):  
Tushar Bag ◽  
Hai Q. Dinh ◽  
Ashish Kumar Upadhyay ◽  
Woraphon Yamaka
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document