scholarly journals New quantum codes from skew constacyclic codes

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Ram Krishna Verma ◽  
Om Prakash ◽  
Ashutosh Singh ◽  
Habibul Islam

<p style='text-indent:20px;'>For an odd prime <inline-formula><tex-math id="M1">\begin{document}$ p $\end{document}</tex-math></inline-formula> and positive integers <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M3">\begin{document}$ \ell $\end{document}</tex-math></inline-formula>, let <inline-formula><tex-math id="M4">\begin{document}$ \mathbb{F}_{p^m} $\end{document}</tex-math></inline-formula> be the finite field with <inline-formula><tex-math id="M5">\begin{document}$ p^{m} $\end{document}</tex-math></inline-formula> elements and <inline-formula><tex-math id="M6">\begin{document}$ R_{\ell,m} = \mathbb{F}_{p^m}[v_1,v_2,\dots,v_{\ell}]/\langle v^{2}_{i}-1, v_{i}v_{j}-v_{j}v_{i}\rangle_{1\leq i, j\leq \ell} $\end{document}</tex-math></inline-formula>. Thus <inline-formula><tex-math id="M7">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula> is a finite commutative non-chain ring of order <inline-formula><tex-math id="M8">\begin{document}$ p^{2^{\ell} m} $\end{document}</tex-math></inline-formula> with characteristic <inline-formula><tex-math id="M9">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, we aim to construct quantum codes from skew constacyclic codes over <inline-formula><tex-math id="M10">\begin{document}$ R_{\ell,m} $\end{document}</tex-math></inline-formula>. First, we discuss the structures of skew constacyclic codes and determine their Euclidean dual codes. Then a relation between these codes and their Euclidean duals has been obtained. Finally, with the help of a duality-preserving Gray map and the CSS construction, many MDS and better non-binary quantum codes are obtained as compared to the best-known quantum codes available in the literature.</p>

2019 ◽  
Vol 12 (04) ◽  
pp. 1950050
Author(s):  
Saroj Rani

Constacyclic codes form an important class of linear codes which is remarkable generalization of cyclic and negacyclic codes. In this paper, we assume that [Formula: see text] is the finite field of order [Formula: see text] where [Formula: see text] is a power of the prime [Formula: see text] and [Formula: see text] are distinct odd primes, and [Formula: see text] are positive integers. We determine generator polynomials of all constacyclic codes of length [Formula: see text] over the finite field [Formula: see text] We also determine their dual codes.


2016 ◽  
pp. 39-49
Author(s):  
Mustafa Sari ◽  
Irfan Siap

In this study, we introduce a new Gray map which preserves the orthogonality from the chain ring F_2 [u] / (u^s ) to F^s_2 where F_2 is the finite field with two elements. We also give a condition of the existence for cyclic codes of odd length containing its dual over the ring F_2 [u] / (u^s ) . By taking advantage of this Gray map and the structure of the ring, we obtain two classes of binary quantum error correcting (QEC) codes and we finally illustrate our results by presenting some examples with good parameters.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2554
Author(s):  
Mohammed E. Charkani ◽  
Hai Q. Dinh ◽  
Jamal Laaouine ◽  
Woraphon Yamaka

Let p be a prime, s, m be positive integers, γ be a nonzero element of the finite field Fpm, and let R=Fpm[u]/⟨u3⟩ be the finite commutative chain ring. In this paper, the symbol-pair distances of all γ-constacyclic codes of length ps over R are completely determined.


2021 ◽  
Vol 14 (3) ◽  
pp. 1082-1097
Author(s):  
Jagbir Singh ◽  
Prateek Mor ◽  
Shikha . ◽  
Meena .

This paper is concerned with, structural properties and construction of quantum codes over Z3 by using constacyclic codes over the finite commutative non-chain ring R = Z3 + νZ3 + ωZ3 + νωZ3 where ν2 = 1, ω2 = ω, νω = νω, and Z3 is field having 3 elements with characteristic 3. A Gray map is defined between R and Z43. The parameters of quantum codes over Z3 are obtained by decomposing constacyclic codes into cyclic and negacyclic codes over Z3. As an application, some examples of quantum codes of arbitrary length, are also obtained.


2020 ◽  
Vol 70 (6) ◽  
pp. 626-632
Author(s):  
Om Prakash ◽  
Shikha Yadav ◽  
Ram Krishna Verma

This article discusses linear complementary dual (LCD) codes over ℜ = Fq+uFq(u2=1) where q is a power of an odd prime p. Authors come up with a new Gray map from ℜn to F2nq and define a new class of codes obtained as the gray image of constacyclic codes over .ℜ Further, we extend the study over Euclidean and Hermitian LCD codes and establish a relation between reversible cyclic codes and Euclidean LCD cyclic codes over ℜ. Finally, an application of LCD codes in multisecret sharing scheme is given.


2021 ◽  
Vol 28 (04) ◽  
pp. 581-600
Author(s):  
Hai Q. Dinh ◽  
Hualu Liu ◽  
Roengchai Tansuchat ◽  
Thang M. Vo

Negacyclic codes of length [Formula: see text] over the Galois ring [Formula: see text] are linearly ordered under set-theoretic inclusion, i.e., they are the ideals [Formula: see text], [Formula: see text], of the chain ring [Formula: see text]. This structure is used to obtain the symbol-pair distances of all such negacyclic codes. Among others, for the special case when the alphabet is the finite field [Formula: see text] (i.e., [Formula: see text]), the symbol-pair distance distribution of constacyclic codes over [Formula: see text] verifies the Singleton bound for such symbol-pair codes, and provides all maximum distance separable symbol-pair constacyclic codes of length [Formula: see text] over [Formula: see text].


2019 ◽  
Vol 19 (06) ◽  
pp. 2050103 ◽  
Author(s):  
Yonglin Cao ◽  
Yuan Cao ◽  
Hai Q. Dinh ◽  
Fang-Wei Fu ◽  
Jian Gao ◽  
...  

Let [Formula: see text] be a finite field of cardinality [Formula: see text], where [Formula: see text] is an odd prime, [Formula: see text] be positive integers satisfying [Formula: see text], and denote [Formula: see text], where [Formula: see text] is an irreducible polynomial in [Formula: see text]. In this note, for any fixed invertible element [Formula: see text], we present all distinct linear codes [Formula: see text] over [Formula: see text] of length [Formula: see text] satisfying the condition: [Formula: see text] for all [Formula: see text]. This conclusion can be used to determine the structure of [Formula: see text]-constacyclic codes over the finite chain ring [Formula: see text] of length [Formula: see text] for any positive integer [Formula: see text] satisfying [Formula: see text].


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 303
Author(s):  
Sami Alabiad ◽  
Yousef Alkhamees

Let R be a finite commutative chain ring of characteristic p with invariants p,r, and k. In this paper, we study λ-constacyclic codes of an arbitrary length N over R, where λ is a unit of R. We first reduce this to investigate constacyclic codes of length ps (N=n1ps,p∤n1) over a certain finite chain ring CR(uk,rb) of characteristic p, which is an extension of R. Then we use discrete Fourier transform (DFT) to construct an isomorphism γ between R[x]/<xN−λ> and a direct sum ⊕b∈IS(rb) of certain local rings, where I is the complete set of representatives of p-cyclotomic cosets modulo n1. By this isomorphism, all codes over R and their dual codes are obtained from the ideals of S(rb). In addition, we determine explicitly the inverse of γ so that the unique polynomial representations of λ-constacyclic codes may be calculated. Finally, for k=2 the exact number of such codes is provided.


2018 ◽  
Vol 10 (04) ◽  
pp. 1850046 ◽  
Author(s):  
Juan Li ◽  
Jian Gao ◽  
Yongkang Wang

In this paper, structural properties of [Formula: see text]-constacyclic codes over the finite non-chain ring [Formula: see text] are studied, where [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] is a power of some odd prime. As an application, some better quantum codes, compared with previous work, are obtained.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Tingting Wu ◽  
Shixin Zhu ◽  
Li Liu ◽  
Lanqiang Li

<p style='text-indent:20px;'>Let <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula> be a finite field with character <inline-formula><tex-math id="M2">\begin{document}$ p $\end{document}</tex-math></inline-formula>. In this paper, the multiplicative group <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{F}_{q}^{*} = \mathbb{F}_{q}\setminus\{0\} $\end{document}</tex-math></inline-formula> is decomposed into a mutually disjoint union of <inline-formula><tex-math id="M4">\begin{document}$ \gcd(6l^mp^n,q-1) $\end{document}</tex-math></inline-formula> cosets over subgroup <inline-formula><tex-math id="M5">\begin{document}$ &lt;\xi^{6l^mp^n}&gt; $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ \xi $\end{document}</tex-math></inline-formula> is a primitive element of <inline-formula><tex-math id="M7">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>. Based on the decomposition, the structure of constacyclic codes of length <inline-formula><tex-math id="M8">\begin{document}$ 6l^mp^n $\end{document}</tex-math></inline-formula> over finite field <inline-formula><tex-math id="M9">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula> and their duals is established in terms of their generator polynomials, where <inline-formula><tex-math id="M10">\begin{document}$ p\neq{3} $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ l\neq{3} $\end{document}</tex-math></inline-formula> are distinct odd primes, <inline-formula><tex-math id="M12">\begin{document}$ m $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M13">\begin{document}$ n $\end{document}</tex-math></inline-formula> are positive integers. In addition, we determine the characterization and enumeration of all linear complementary dual(LCD) negacyclic codes and self-dual constacyclic codes of length <inline-formula><tex-math id="M14">\begin{document}$ 6l^mp^n $\end{document}</tex-math></inline-formula> over <inline-formula><tex-math id="M15">\begin{document}$ \mathbb{F}_{q} $\end{document}</tex-math></inline-formula>.</p>


Sign in / Sign up

Export Citation Format

Share Document