Global Existence and Large Time Behavior of Strong Solutions for 3D Nonhomogeneous Heat-Conducting Magnetohydrodynamic Equations

Author(s):  
Xin Zhong
2019 ◽  
Vol 29 (01) ◽  
pp. 185-207 ◽  
Author(s):  
Young-Pil Choi

This paper studies the global existence and uniqueness of strong solutions and its large-time behavior for the compressible isothermal Euler equations with a nonlocal dissipation. The system is rigorously derived from the kinetic Cucker–Smale flocking equation with strong local alignment forces and diffusions through the hydrodynamic limit based on the relative entropy argument. In a perturbation framework, we establish the global existence of a unique strong solution for the system under suitable smallness and regularity assumptions on the initial data. We also provide the large-time behavior of solutions showing the fluid density and the velocity converge to its averages exponentially fast as time goes to infinity.


2021 ◽  
pp. 1-27
Author(s):  
Xin Zhong

We investigate an initial boundary value problem of two-dimensional nonhomogeneous heat conducting magnetohydrodynamic equations. We prove that there exists a unique global strong solution. Moreover, we also obtain the large time decay rates of the solution. Note that the initial data can be arbitrarily large and the initial density allows vacuum states. Our method relies upon the delicate energy estimates and Desjardins’ interpolation inequality (B. Desjardins, Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Rational Mech. Anal. 137(2) (1997) 135–158).


Sign in / Sign up

Export Citation Format

Share Document