Development of a Driving Behavior-Based Collision Warning System Using a Neural Network

2018 ◽  
Vol 19 (5) ◽  
pp. 837-844 ◽  
Author(s):  
Sang Hyeop Lee ◽  
Suk Lee ◽  
Man Ho Kim
Author(s):  
Donghoun Lee ◽  
Sehyun Tak ◽  
Sungjin Park ◽  
Hwasoo Yeo

In the intelligent transportation system field, there has been a growing interest in developing collision warning systems based on artificial neural network (ANN) techniques in an effort to address several issues associated with parametric approaches. Previous ANN-based collision warning algorithms were generally based on predetermined associative memories derived before driving. Because collision risk is highly related to the current traffic situation, such as traffic state transition from free flow to congestion, however, updating associative memory in real time should be considered. To improve further the performance of the warning system, a systemic architecture is proposed to implement the multilayer perceptron neural network–based rear-end collision warning system (MCWS), which updates the associative memory with the vehicle distance sensor and smartphone data in a cloud computing environment. For the practical use of the proposed MCWS, its collision warning accuracy is evaluated with respect to various time intervals for updating the associative memories and market penetration rates. Results show that the MCWS exhibits a steady improvement in its warning performance as the time interval decreases, whereas the MCWS works more efficiently as the sampling ratio increases overall. When the sampling ratio reaches 50%, the MCWS shows a particularly stable warning accuracy, regardless of the time interval. These findings suggest that the MCWS has great potential to provide an acceptable level of warning accuracy for practical use, as it can obtain the well-trained associative memories reflecting current traffic situations by using information from widespread smartphones.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yuting Zhang ◽  
Xuedong Yan ◽  
Zhuo Yang

This study examines the impacts of directional and nondirectional auditory warning information in a collision warning system (CWS) on driving behavior. The data on driving behavior is collected through experiment, with scenarios containing unexpected hazard events that include different warning content. As drivers approached the collision event, either a CWS auditory warning was given or no warning was given for a reference group. Discriminant analysis was used to investigate the relationship between directional auditory warning information and driving behavior. In the experiment, the CWS warnings significantly reduced brake reaction time and prompted drivers to press the brake pedal more heavily, demonstrating the effectiveness of CWS warnings in alerting drivers to avoid red-light running (RLR) vehicles when approaching a signalized intersection. Providing a clear warning with directional information about an urgent hazard event could give drivers adequate time to prepare for the potential collision. In terms of deceleration, a directional information warning was shown to greatly help drivers react to critical events at signalized intersections with more moderate braking. From these results, requirements can be derived for the design of effective warning strategies for critical intersections.


Sign in / Sign up

Export Citation Format

Share Document