directional information
Recently Published Documents


TOTAL DOCUMENTS

445
(FIVE YEARS 120)

H-INDEX

36
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Marius Lange ◽  
Volker Bergen ◽  
Michal Klein ◽  
Manu Setty ◽  
Bernhard Reuter ◽  
...  

AbstractComputational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank (https://cellrank.org) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Wenxia Pan

English machine translation is a natural language processing research direction that has important scientific research value and practical value in the current artificial intelligence boom. The variability of language, the limited ability to express semantic information, and the lack of parallel corpus resources all limit the usefulness and popularity of English machine translation in practical applications. The self-attention mechanism has received a lot of attention in English machine translation tasks because of its highly parallelizable computing ability, which reduces the model’s training time and allows it to capture the semantic relevance of all words in the context. The efficiency of the self-attention mechanism, however, differs from that of recurrent neural networks because it ignores the position and structure information between context words. The English machine translation model based on the self-attention mechanism uses sine and cosine position coding to represent the absolute position information of words in order to enable the model to use position information between words. This method, on the other hand, can reflect relative distance but does not provide directionality. As a result, a new model of English machine translation is proposed, which is based on the logarithmic position representation method and the self-attention mechanism. This model retains the distance and directional information between words, as well as the efficiency of the self-attention mechanism. Experiments show that the nonstrict phrase extraction method can effectively extract phrase translation pairs from the n-best word alignment results and that the extraction constraint strategy can improve translation quality even further. Nonstrict phrase extraction methods and n-best alignment results can significantly improve the quality of translation translations when compared to traditional phrase extraction methods based on single alignment.


2021 ◽  
Vol 19 ◽  
pp. 1-7 ◽  
Author(s):  
Karsten Schubert ◽  
Jens Werner ◽  
Jens Wellhausen

Abstract. Doppler VOR (D-VOR) transmitters are used as navigation aids in aviation. They transmit an omnidirectional phase reference in an amplitude-modulated (AM) sideband and directional phase information on a frequency-modulated (FM) subcarrier. In an airborne D-VOR navigation receiver, a directional information (azimuth angle) related to the position of the aircraft and the location of the transmitter can be derived from the difference of these two phase signals. In this work, the accuracy of AM and FM phase signals is firstly investigated analytically and afterwards verified by measurements. It will be shown that in established procedures, phase inaccuracy is dominated by the AM signal, since the FM signal is about 21 dB less noisy. Subsequently, a novel method is presented that improves the accuracy of the azimuth angle by orders of magnitude in case of D-VOR transmitters. This new method inherently reduces noise of the AM phase and thus yields a significant increase in accuracy. As a result, the remaining FM phase uncertainty becomes dominant for the total uncertainty of the bearing indication. Finally, the application of the new method to real measured signals confirms the theoretical expectations.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8322
Author(s):  
Ziwei Yi ◽  
Wenqi Lu ◽  
Xu Qu ◽  
Linheng Li ◽  
Peipei Mao ◽  
...  

Connected vehicle (CV) technologies are changing the form of traditional traffic models. In the CV driving environment, abundant and accurate information is available to vehicles, promoting the development of control strategies and models. Under these circumstances, this paper proposes a bidirectional vehicles information structure (BDVIS) by making use of the acceleration information of one preceding vehicle and one following vehicle to improve the car-following models. Then, we deduced the derived multiple vehicles information structure (DMVIS), including historical movement information of multiple vehicles, without the acceleration information. Next, the paper embeds the four kinds of basic car-following models into the framework to investigate the stability condition of two structures under the small perturbation of traffic flow and explored traffic response properties with different proportions of forward-looking or backward-looking terms. Under the open boundary condition, simulations on a single lane are conducted to validate the theoretical analysis. The results indicated that BDVIS and the DMVIS perform better than the original car-following model in improving the traffic flow stability, but that they have their own advantages for differently positioned vehicles in the platoon. Moreover, increasing the proportions of the preceding and following vehicles presents a benefit to stability, but if traffic is stable, an increase in any of the parameters would extend the influence time, which reveals that neither β1 or β2 is the biggest the best for the traffic.


2021 ◽  
Author(s):  
Yuk-Hoi Yiu ◽  
Jill K Leutgeb ◽  
Christian Leibold

Running direction in the hippocampus is encoded by rate modulations of place field activity but also by spike timing correlations known as theta sequences. Whether directional rate codes and the directionality of place field correlations are related, however, has so far not been explored and therefore the nature of how directional information is encoded in the cornu ammonis remains unresolved. Here, using a previously published dataset that contains the spike activity of rat hippocampal place cells in the CA1, CA2 and CA3 subregions during free foraging of male Long-Evans rats in a 2D environment, we found that rate and spike timing codes are related. Opposite to a place field's preferred firing rate direction spikes are more likely to undergo theta phase precession and, hence, more strongly impact paired correlations. Furthermore, we identified a subset of field pairs whose theta correlations are intrinsic in that they maintain the same firing order when the running direction is reversed. Both effects are associated with differences in theta phase distributions, and are more prominent in CA3 than CA1. We thus hypothesize that intrinsic spiking is most prominent when the directionally modulated sensory-motor drive of hippocampal firing rates is minimal, suggesting that extrinsic and intrinsic sequences contribute to phase precession as two distinct mechanisms.


Author(s):  
Nicoló Andrea Caserini ◽  
Paolo Pagnottoni

AbstractIn this paper we propose to study the dynamics of financial contagion between the credit default swap (CDS) and the sovereign bond markets through effective transfer entropy, a model-free methodology which enables to overcome the required hypotheses of classical price discovery measures in the statistical and econometric literature, without being restricted to linear dynamics. By means of effective transfer entropy we correct for small sample biases which affect the traditional Shannon transfer entropy, as well as we are able to conduct inference on the estimated directional information flows. In our empirical application, we analyze the CDS and bond market data for eight countries of the European Union, and aim to discover which of the two assets is faster at incorporating the information on the credit risk of the underlying sovereign. Our results show a clear and statistically significant prominence of the bond market for pricing the sovereign credit risk, especially during the crisis period. During the post-crisis period, instead, a few countries behave dissimilarly from the others, in particular Spain and the Netherlands.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gert Pfurtscheller ◽  
Katarzyna J. Blinowska ◽  
Maciej Kaminski ◽  
Andreas R. Schwerdtfeger ◽  
Beate Rassler ◽  
...  

AbstractBrain–heart synchronization is fundamental for emotional-well-being and brain–heart desynchronization is characteristic for anxiety disorders including specific phobias. Recording BOLD signals with functional magnetic resonance imaging (fMRI) is an important noninvasive diagnostic tool; however, 1–2% of fMRI examinations have to be aborted due to claustrophobia. In the present study, we investigated the information flow between regions of interest (ROI’s) in the cortex and brain stem by using a frequency band close to 0.1 Hz. Causal coupling between signals important in brain–heart interaction (cardiac intervals, respiration, and BOLD signals) was studied by means of Directed Transfer Function based on the Granger causality principle. Compared were initial resting states with elevated anxiety and final resting states with low or no anxiety in a group of fMRI-naïve young subjects. During initial high anxiety the results showed an increased information flow from the middle frontal gyrus (MFG) to the pre-central gyrus (PCG) and to the brainstem. There also was an increased flow from the brainstem to the PCG. While the top-down flow during increased anxiety was predominant, the weaker ascending flow from brainstem structures may characterize a rhythmic pacemaker-like activity that (at least in part) drives respiration. We assume that these changes in information flow reflect successful anxiety processing.


2021 ◽  
Author(s):  
Sohyeon Park ◽  
Hyunjoong Kim ◽  
Yi Wang ◽  
Dae Seok Eom ◽  
Jun Allard

In addition to diffusive signals, cells in tissue also communicate via long, thin cellular protrusions, such as airinemes in zebrafish. Before establishing communication, cellular protrusions must find their target cell. Here we demonstrate that the shape of airinemes in zebrafish are consistent with a finite persistent random walk model. The probability of contacting the target cell is maximized for a balance between ballistic search (straight) and diffusive search (highly curved, random). We find that the curvature of airinemes in zebrafish, extracted from live cell microscopy, is approximately the same value as the optimum in the simple persistent random walk model. We also explore the ability of the target cell to infer direction of the airineme's source, finding that there is a theoretical trade-off between search optimality and directional information. This provides a framework to characterize the shape, and performance objectives, of non-canonical cellular protrusions in general.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12351
Author(s):  
Yingchao Zhang ◽  
Weidong Pan

Background Migratory brown planthopper Nilaparvata lugens (N. lugens) annually migrates to Northeast Asia in spring and returns to Southeast Asia in autumn. However, mechanisms for orientation and navigation during their flight remain largely unknown. The geomagnetic field (GMF) is an important source of directional information for animals (including N. lugens), yet the magnetic compass involved has not been fully identified. Methods Here we assessed the influences of GMF on the foraging orientation preference of N. lugens by removing or component reversal of local GMF. At the same time, we examined the role of iron-sulfur cluster assembly1 (IscA1), a putative component of magnetoreceptor, in the foraging orientation preference of N. lugens under the controlled magnetic fields by RNA silencing (RNAi). Results We found that the near-zero magnetic field (NZMF) or vertical reversal of GMF could lead to N. lugens losing the foraging orientation preference, suggesting that a normal level of GMF, in the way of either intensity or inclination, was essential for the foraging orientation of N. lugens. Moreover, the gene knockdown of IscA1, also affected the foraging orientation preference of N. lugens, pointing out a potential role of IscA1 in the insects’ sensing of variation in the GMF. Discussion These results suggested a foraging orientation preference is associated with the GMF and revealed new insights into the relationship between the IscA1 and magnetosensitivity mechanism in N. lugens.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258490
Author(s):  
Serena Castellotti ◽  
Lisa Scipioni ◽  
Stefano Mastandrea ◽  
Maria Michela Del Viva

Motion can be perceived in static images, such as photos and figurative paintings, representing realistic subjects in motion, with or without directional information (e.g., motion blur or speed lines). Motion impression can be achieved even in non-realistic static images such as motion illusions and abstract paintings. It has been shown that visual motion processing affects the diameter of the pupil, responding differently to real, illusory, and implied motion in photographs (IM). It has been suggested that these different effects might be due to top-down modulations from different cortical areas underlying their processing. It is worthwhile to investigate pupillary response to figurative paintings, since they require an even higher level of interpretation than photos representing the same kind of subjects, given the complexity of cognitive processes involved in the aesthetic experience. Also, pupil responses to abstract paintings allows to study the effect of IM perception in representations devoid of real-life motion cues. We measured pupil responses to IM in figurative and abstract artworks depicting static and dynamic scenes, as rated by a large group of individuals not participating in the following experiment. Since the pupillary response is modulated by the subjective image interpretation, a motion rating test has been used to correct individual pupil data according to whether participants actually perceived the presence of motion in the paintings. Pupil responses to movies showing figurative and abstract subjects, and to motion illusions were also measured, to compare real and illusory motion with painted IM. Movies, both figurative and abstract, elicit the largest pupillary dilation of all static stimuli, whereas motion illusions cause the smallest pupil size, as previously shown. Interestingly, pupil responses to IM depend on the paintings’ style. Figurative paintings depicting moving subjects cause more dilation than those representing static figures, and pupil size increases with the strength of IM, as already found with realistic photos. The opposite effect is obtained with abstract artworks. Abstract paintings depicting motion produce less dilation than those depicting stillness. In any case, these results reflect the individual subjective perception of dynamism, as the very same paintings can induce opposite responses in observer which interpreted it as static or dynamic. Overall, our data show that pupil size depends on high-level interpretation of motion in paintings, even when they do not represent real-world scenes. Our findings further suggest that the pupil is modulated by multiple top-down cortical mechanisms, involving the processing of motion, attention, memory, imagination, and other cognitive functions necessary for enjoying a complete aesthetic experience.


Sign in / Sign up

Export Citation Format

Share Document