Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization

2010 ◽  
Vol 12 (3) ◽  
pp. 271-286 ◽  
Author(s):  
Masatoshi Sakawa ◽  
Hideki Katagiri ◽  
Takeshi Matsui
2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
Aihong Ren

We address a fully fuzzy bilevel linear programming problem in which all the coefficients and variables of both objective functions and constraints are expressed as fuzzy numbers. This paper is to develop a new method to deal with the fully fuzzy bilevel linear programming problem by applying interval programming method. To this end, we first discretize membership grade of fuzzy coefficients and fuzzy decision variables of the problem into a finite number ofα-level sets. By usingα-level sets of fuzzy numbers, the fully fuzzy bilevel linear programming problem is transformed into an interval bilevel linear programming problem for eachα-level set. The main idea to solve the obtained interval bilevel linear programming problem is to convert the problem into two deterministic subproblems which correspond to the lower and upper bounds of the upper level objective function. Based on theKth-best algorithm, the two subproblems can be solved sequentially. Based on a series ofα-level sets, we introduce a linear piecewise trapezoidal fuzzy number to approximate the optimal value of the upper level objective function of the fully fuzzy bilevel linear programming problem. Finally, a numerical example is provided to demonstrate the feasibility of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document