Meteorological drought prediction using heuristic approaches based on effective drought index: a case study in Uttarakhand

2020 ◽  
Vol 13 (6) ◽  
Author(s):  
Anurag Malik ◽  
Anil Kumar
2016 ◽  
Vol 128 (1-2) ◽  
pp. 359-379 ◽  
Author(s):  
Ravinesh C. Deo ◽  
Hi-Ryong Byun ◽  
Jan F. Adamowski ◽  
Khaleda Begum

2021 ◽  
Vol 255 ◽  
pp. 107001
Author(s):  
Md Anarul Haque Mondol ◽  
Xuan Zhu ◽  
David Dunkerley ◽  
Benjamin J. Henley

2021 ◽  
Author(s):  
Md Anarul Haque Mondol ◽  
Xuan Zhu ◽  
David Dunkerley ◽  
Benjamin J. Henley

<p>The nature and characteristics of drought are not like a flood, cyclone or storm surge since droughts cannot easily be tracked and are difficult to quantify as a distinct event. In this study, we examined the characteristics of meteorological drought occurrence and severity using the Effective Drought Index (EDI), including the drought events, drought chronology, onset and ending of drought, consecutive drought spells, drought frequency, intensity and severity, using North-Bengal of Bangladesh as a case study. The rainfall and temperature dataset of Bangladesh Meteorological Department (BMD) for the study region throughout 1979-2018 is utilised. The trends of drought are detected by using the Mann-Kendall test and Sen Slope estimation. We evaluated the performance of EDI using the Standardized Precipitation Index (SPI), historical drought records and rice production. The study finds that seasonal and annual droughts have become more frequent in all seasons except pre-monsoon. In addition, the largest decrease in seasonal EDI is found in the monsoon in both Teesta floodplain and Barind tract. In decades prior to the late 2000s, a drought spell typically started between March to May (± 15 days) and ended with the monsoonal rainfall in June/July. In the years since the last 2000s, monsoon and post-monsoon droughts spells have significantly increased. Overall, the peak intensities of droughts are higher in the Barind tract than in the Teesta floodplain, and the frequency and severity of moderate to severe drought are increasing significantly in the Barind tract. Though EDI is strongly correlated with the SPI index, EDI and rice production have a non-linear relationship and are not significantly correlated. Hence, this research suggests that there are other significant influences on yield rather than just climatological drought (e.g. irrigation, lack of technology and management etc.).</p>


2020 ◽  
Vol 11 (S1) ◽  
pp. 29-43 ◽  
Author(s):  
Okan Mert Katipoğlu ◽  
Reşat Acar ◽  
Selim Şengül

Abstract Drought incidents occur due to the fact that precipitation values are below average for many years. Drought causes serious effects in many sectors, such as agriculture, economy, health, and energy. Therefore, the determination of drought and water scarcity, monitoring, management, and planning of drought and taking early measures are important issues. In order to solve these issues, the advantages and disadvantages of five different meteorological drought indices were compared, and the most effective drought index was determined for monitoring drought. Accordingly, in the monthly, 3-month, and 12-month time period, covering the years between 1966 and 2017 (52 years), Standardized Precipitation Index (SPI), Statistical Z-Score Index (ZSI), Rainfall Anomaly Index (RAI), Standardized Precipitation Evapotranspiration Index (SPEI), and Reconnaissance Drought Index (RDI) were used. It was concluded that precipitation-based SPI and ZSI are similar patterns and precipitation, and temperature-based SPEI and RDI are similar patterns. Also, it has been determined that RAI is more effective than other indices in determining the periods of extreme drought or wet. Furthermore, SPEI and RDI have been found to be superior to other indices as they take into account the water consumption and climate effects caused by evapotranspiration.


Sign in / Sign up

Export Citation Format

Share Document