meteorological drought
Recently Published Documents


TOTAL DOCUMENTS

790
(FIVE YEARS 465)

H-INDEX

39
(FIVE YEARS 12)

2022 ◽  
Vol 269 ◽  
pp. 112833
Author(s):  
Sumanta Chatterjee ◽  
Ankur R. Desai ◽  
Jun Zhu ◽  
Philip A. Townsend ◽  
Jingyi Huang

2022 ◽  
Author(s):  
Jiawei Zhou ◽  
Xiaohong Chen ◽  
Chuang Xu ◽  
Pan Wu

Abstract Socioeconomic drought is a phenomenon of water shortage caused by an imbalance between the supply and demand of water resources in natural and human socioeconomic systems. Occurrence of these droughts is closely related to sustainable socioeconomic development. However, compared with meteorological drought, hydrological drought and agricultural drought, socioeconomic drought has received relatively little attention. Therefore, this paper proposes a universal and relatively simple socioeconomic drought assessment index, the Standardized Supply and Demand Water Index (SSDWI). Taking the Jianjiang River Basin (JJRB) in Guangdong Province, China as an example, socioeconomic drought characteristics and trends during 1985-2019 were analyzed. The return period of different levels of drought were calculated using a copula function to estimate the risk of socioeconomic drought in the basin, and the relationship between socioeconomic, meteorological, and hydrological droughts and their potential drivers were discussed. The results showed that: (1) SSDWI was a better index for characterizing socioeconomic drought in the JJRB. 29 socioeconomic droughts occurred in the basin during the past 35 years, with an average duration of 6.16 months and an average severity of 5.82 per events. Socioeconomic droughts mainly occurred in autumn and winter, which also had more severe droughts than other seasons. (2) In the JJRB, the joint return periods of ‘∪’ and ‘∩’ for moderate drought, severe drought and extreme drought were 8.81a and 10.81a, 16.49a and 26.44a, and 41.68a and 91.13a, respectively; (3) Due to the increasing outflow from Gaozhou Reservoir, the risk of socioeconomic drought and hydrological drought in the JJRB has significantly declined since 2008. The reasonable operation of the reservoir has played an important role in alleviating the hydrological and socioeconomic drought in the basin.


MAUSAM ◽  
2022 ◽  
Vol 52 (3) ◽  
pp. 541-546
Author(s):  
K. C. SINHA RAY ◽  
M. P. SHEWALE

There are many studies dealing with interannual variability of rainfall in India. There are also studies available dealing with the reduction of food grain production during various drought years in India, Hence, there is along felt need to know about chances whether the next year will be a drought year. It is also seen that during last 11 years when the country as a whole experienced normal rainfall, there were few sub-divisions almost in each year facing a drought situation. The objective of this paper is to find out with the help of nearly 125 years data the probability of occurrence of drought in various sub-divisions of India and the probability of a sub-division facing two or more consecutive droughts, many studies deal with deficiency in all India summer monsoon rainfall and their linkage with El Nino. Effort has also been made in this paper to find out if there is any linkage between El Nino events in Pacific and meteorological drought in various sub-divisions of India. It is seen that eff~t of El Nino on each sub-division of India is different. It is also noticed that all El Nino years are not drought years and all drought years are also not El Nino years. During last 124 years there were 29 El Nino years. Out of these only 14 were drought years. Similarly there were 25 drought years during last 124 years out of which 11 drought years were not connected with El Nino.


2022 ◽  
Author(s):  
Mehdi Mohammadi Ghaleni ◽  
Saeed Sharafi ◽  
Seyed-Mohammad Hosseini-Moghari ◽  
Jalil Helali ◽  
Ebrahim Asadi Oskouei

Abstract The present study compares the main characteristics (intensity, duration, and frequency) of meteorological drought events in the four climates (Hyperarid, Arid, Semiarid, and Humid) of Iran. For this purpose, three drought indices, including Standardized Precipitation Index (SPI), Reconnaissance Drought Index (RDI), and Standardized Precipitation Evapotranspiration Index (SPEI), were employed at the timescales of 1-, 3-, 6-, 9- and 12-months. These indices were compared by utilizing long-term data of 41 synoptic meteorological stations for the recent half century, 1969–2019. The long-term analysis of drought indices indicates that the duration and intensity of drought events have temporally risen after the 1998–99 period. Iran has experienced the longest duration (40 months) of extreme drought during Dec 98–Mar 02 and Jan 18–Mar 18, respectively. Spatial patterns demonstrate that drought intensity uniformly increased in SPI1 to SPI12, and SPEI3 to SPEI12, from humid and semiarid to arid and hyperarid regions. The average drought duration in studied stations for SPI, SPEI and RDI indices equaled 9, 12, and 9 months, respectively. In addition, mean drought frequencies are calculated at 14, 17, and 13 percent for SPI, SPEI and RDI indices, respectively. Generally, SPEI compared to SPI and RDI shows greater duration and frequency of drought events, particularly in arid and hyperarid regions. The research shows the crucial role of climatic variables in detecting drought characteristics and the importance of selecting appropriate drought indices in various climates.


Author(s):  
Mhamd S. Oyounalsoud ◽  
◽  
Arwa Najah ◽  
Abdullah G. Yilmaz ◽  
Mohamed Abdallah ◽  
...  

Drought is a natural disaster that significantly affects environmental and socio-economic conditions. It occurs when there is a period of below average precipitation in a region, and it results in water supply shortages affecting various sectors and life adversely. Droughts impact the ecosystems, crop production, and erode livelihoods. Monitoring drought is essential especially in the United Arab Emirates (UAE) due to the scarcity of rainfall for an extended period of time. In this study, drought is assessed in Sharjah UAE using monthly precipitation and average temperature data recorded for 35 years (1981-2015) at the Sharjah International Airport. The standardized precipitation Index (SPI), and the Reconnaissance Drought Index (RDI) are selected to predict future droughts in the region. SPI and RDI are fitted to the statistical distribution functions (gamma and lognormal) in an annual time scale and then, a trend analysis of index values is carried out using Mann-Kendal test. The correlation between SPI and RDI indices was found to be high where both showed high drought frequencies and a tendency to get drier over time, thus indicating the need of appropriate drought management and monitoring.


2021 ◽  
pp. 1-64

Abstract Diagnosis of rapidly developing springtime droughts in the central U.S. has mostly been made via numerous individual case studies rather than in an aggregate sense. This study investigates common aspects of subseasonal “meteorological drought” evolution, here defined as persistent precipitation minus evapotranspiration (P-ET) deficits, revealed in early (April 1-May 15) and late (May 16-June 30) spring composites of 5-day running mean JRA-55 reanalysis data for three different central U.S. regions during 1958-2018. On average, these droughts are initiated by a quasi-stationary Rossby wave packet (RWP), propagating from the western North Pacific, which arises about a week prior to drought onset. The RWP is related to a persistent ridge west of the incipient drought region and strong subsidence over it. This subsidence is associated with low-level divergent flow that dries the atmosphere and suppresses precipitation for roughly 1-2 weeks, and generally has a greater impact on the moisture budget than does reduced poleward moisture transport. The resulting “dynamically driven” evaporative demand corresponds to a rapid drying of the root-zone soil moisture, which decreases ∼40 percentiles within ∼10 days. Anomalous near-surface warmth develops only after P-ET deficit onset, as does anomalously low soil moisture that then lingers a month or more, especially in late spring. The horizontal scale of the RWPs, and of the related drought anomalies, decreases from early to late spring, consistent with the climatological change in the Pacific Rossby waveguide. Finally, while this composite analysis is based upon strong, persistent P-ET deficits, it still appears to capture much of the springtime development of so-called “flash droughts” as well.


2021 ◽  
Author(s):  
Mahsa Pakdin ◽  
Morteza Akbari ◽  
Mohamad Alizadeh Noughani

Abstract Climate change and global warming impact the frequency of droughts and supply systems. Therefore, it is necessary to conduct appropriate studies to evaluate the impact of climate change on weather patterns and drought. For this purpose, data from 6 synoptic stations located in the wet and temperate areas in the Zagros region in western Iran were used to construct four general atmospheric models including BCC-CSM1, CANESM2, HADGEM2-ES, NORESM1-M under representative concentration pathways (RCPs) 2.6, 4.5, and 8.5, for three future periods (2010-2039), (2040-2069) and (2070-2099). Then, spatio-temporal variations of drought severity and frequency were studied in the study area using SPI and SPEI indices in different periods up to 2100. The results showed the spatial extent of areas classified as extremely dry will increase by 47.9% in the first period compared to the base period. In the second and third periods, however, the severely dry class covers more area. Analysis of SPEI showed that drought will be more severe in all future periods. According to SPEI, drought frequency will increase by 2% according to the first period (2010-2039) relative to the base period (1984-2013), and by 0.3% in the second and third periods by 2099. The results of this study indicate that the severity, frequency, and impacts of drought will increase in the study area until the end of the century. Therefore, appropriate measures should be taken to control and reduce its potential effects in the future.


2021 ◽  
Vol 22 (2) ◽  
pp. 41-49
Author(s):  
Siti Najma Nindya Utami ◽  
Rista Hernandi Virgianto ◽  
Dzikrullah Akbar

Intisari Kekeringan merupakan bencana kompleks yang dapat menyebabkan kerugian masyarakat di berbagai sektor. Salah satu wilayah yang berisiko tinggi mengalami kekeringan adalah Pulau Lombok. Wilayah ini memiliki lahan yang berisiko terkena kekeringan seluas 405.985 ha. Tingkat keparahan kekeringan meteorologis dapat diukur dengan Standardized Precipitation Evapotranspiration Index (SPEI). Salah satu karakteristik kekeringan adalah kondisi vegetasi tanaman yang buruk, oleh karena itu Standardized Vegetation Index (SVI) digunakan sebagai acuan dalam monitoring kekeringan agrikultural. Penelitian ini bertujuan untuk mengetahui hubungan antara SPEI dengan SVI untuk setiap pos hujan di Pulau Lombok tahun 2001-2018. Penelitian ini menggunakan data bulanan tahun 2001-2018 yang meliputi data observasi curah hujan, suhu maksimum, suhu minimum, penginderaan jauh Normalized Differences Vegetation Index (NDVI) dengan resolusi 0,05°, model FLDAS kecepatan angin yang juga didapatkan dengan resolusi 0,5°, lama penyinaran matahari, lintang, dan elevasi. Metode yang digunakan yaitu menghitung indeks kekeringan SPEI dan SVI, kemudian menghitung korelasi dan signifikansi untuk kedua indeks kekeringan tersebut. Hasilnya menunjukkan bahwa SPEI1 lebih tinggi berkorelasi dengan SVI+1 dengan kategori cukup kuat. Untuk SPEI3, SPEI6, dan SPEI12 berkorelasi cukup kuat hingga kuat dengan SVI0. Hal ini menunjukkan bahwa kekeringan jangka panjang akan langsung mempengaruhi kekeringan agrikultural atau kekeringan vegetasi saat itu juga. Nilai korelasi yang lebih tinggi untuk setiap indeks tersebar di pos hujan yang terletak di tengah-tengah Pulau Lombok, karena pengaruh kondisi geografis dan demografis Abstract Drought is a complex disaster because it can cause loss to society in various sectors. One of the high-risk areas of drought is Lombok Island. This area has 405,985 ha of drought risk. The severity of meteorological drought can be measured by the Standardized Precipitation Evapotranspiration Index (SPEI). One of the characteristics of drought is the poor condition of plant vegetation, therefore the Standardized Vegetation Index (SVI) is used as a reference in monitoring agricultural drought. This study aims to determine the relationship of SPEI with SVI for each rainfall post in Lombok Island from 2001-2018. This study uses monthly data from 2001-2018, including observation data of rainfall, maximum temperature, minimum temperature, remote sensing Normalized Differences Vegetation Index (NDVI) 0.05 °, FLDAS model of wind speed 0.5 °, length of the day, latitude, and elevation. The use method is to calculate SPEI and SVI, then calculate the correlation and significance for the two drought indices. The result shows that SPEI1 is higher in correlation with SVI+1, which is in a strong enough category. For SPEI3, SPEI6, and SPEI12, the correlation is strong enough to strong with SVI0. This suggests that long-term drought will directly affect agricultural drought or immediate vegetation drought. The higher correlation values ??for each index are spread over the rain posts located in the middle of Lombok Island because geographic and demographic conditions influence them.  


2021 ◽  
Vol 1 (1) ◽  
pp. 559-565
Author(s):  
Muhammad Faizal Zakaria ◽  
Tira Khasanah Handayani

Tirtoadi sub-district is one of the areas mentioned as being on alert for meteorological drought, which is a condition of not experiencing a day without rain (HTH) for more than 60 days. This research aims to provide information on the presence of subsurface water using geoelectric methods. Data acquisition was carried out at 20 points in Tirtoadi. The distribution of points is random but evenly distributed in the research area. The equipment used is Syscal Jr and the measuring range is 600 m AB, and the direction of the stretch is relatively north to south. The field data obtained are deltas V and I. These data are used to calculate R and Rho. The resistivity value obtained is the apparent resistivity. To obtain a subsurface model of the actual resistivity, it is necessary to perform a 1-D inversion. The inversion is carried out using the Progress V3.0 software. The results obtained in this study are variations in the value of subsurface resistivity. Resistivity of water-containing aquifers ranges between 10 ?m – 50 ?m. The depth of groundwater varies between 50 meters to 80 meters. The thickness of the groundwater varies between 5 meters to 22 meters. The recommended drill point is given at T11 with coordinates 49 S 424996 N 9144372 E because at this point it has the shallowest depth and thick enough thickness.


Sign in / Sign up

Export Citation Format

Share Document