Blossom V: a new implementation of a minimum cost perfect matching algorithm

2009 ◽  
Vol 1 (1) ◽  
pp. 43-67 ◽  
Author(s):  
Vladimir Kolmogorov
2012 ◽  
Vol 89 (9) ◽  
pp. 1102-1119 ◽  
Author(s):  
J.-F. Remacle ◽  
J. Lambrechts ◽  
B. Seny ◽  
E. Marchandise ◽  
A. Johnen ◽  
...  

Author(s):  
Mudabir Kabir Asathulla ◽  
Sanjeev Khanna ◽  
Nathaniel Lahn ◽  
Sharath Raghvendra

1995 ◽  
Vol 34 (23) ◽  
pp. 5100 ◽  
Author(s):  
J. R. Buckland ◽  
J. M. Huntley ◽  
S. R. E. Turner

1984 ◽  
Vol 9 (3) ◽  
pp. 263-268
Author(s):  
Eugeniusz Toczyłowski

2013 ◽  
Vol 40 (4) ◽  
pp. 920-930 ◽  
Author(s):  
Temel Öncan ◽  
Ruonan Zhang ◽  
Abraham P. Punnen

2005 ◽  
Vol DMTCS Proceedings vol. AD,... (Proceedings) ◽  
Author(s):  
József Balogh ◽  
Boris Pittel ◽  
Gelasio Salazar

International audience Consider a set $S$ of points in the plane in convex position, where each point has an integer label from $\{0,1,\ldots,n-1\}$. This naturally induces a labeling of the edges: each edge $(i,j)$ is assigned label $i+j$, modulo $n$. We propose the algorithms for finding large non―crossing $\textit{harmonic}$ matchings or paths, i. e. the matchings or paths in which no two edges have the same label. When the point labels are chosen uniformly at random, and independently of each other, our matching algorithm with high probability (w.h.p.) delivers a nearly―perfect matching, a matching of size $n/2 - O(n^{1/3}\ln n)$.


Sign in / Sign up

Export Citation Format

Share Document