scholarly journals Conserving genetic resources for agriculture: economic implications of emerging science

Food Security ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 919-927 ◽  
Author(s):  
Douglas Gollin

Abstract New challenges have arrived for the conservation of plant genetic resources for food and agriculture. Increased pressure on the environment, including the added threat of climate change, has had adverse effects on biodiversity and agricultural systems. Emerging science and new technologies have at the same time altered the scope of possibilities for collection, conservation, and utilization of genetic resources for agriculture. Taken together, these changes imply a need for a refocusing of global strategies for the management of genetic resources for agriculture. This paper argues that simple theoretical models provide relatively little guidance for key questions about genebank management. The fundamental uncertainty of scientific possibility and global futures makes it challenging – and perhaps futile – to attempt economic valuation of gene banks. A more useful application of economic tools will be in the prioritization of collection and conservation. Economic analysis may also offer useful insights into the efficient management of genetic resources.

HortScience ◽  
2007 ◽  
Vol 42 (2) ◽  
pp. 203-204
Author(s):  
Kim E. Hummer

The fruits of the earth have healed, nurtured, and intrigued humanity throughout history. Cultivated fruit species have complex genome that will continue to require the input of novel genetic resources. Prospecting for wild fruit species will continue. The global nature of science and commerce will drive the demand to expand available genetic resources for fruit improvement. New technologies will enable future explorers to reach remote sites and species. Recent advances, such as geopositioning and remote-communication devices, will be used to a greater degree for targeting specific collection sites and documenting records of origin. The sovereignty of countries over their plant genetic resources, as specified by the Convention on Biological Diversity and the International Treaty on Plant Genetic Resources for Food and Agriculture, will continue to be a cornerstone for negotiating bilateral agreements and plant exchange. Although this could be considered a limitation to plant exploration in some situations, global strategies now in conceptual infancy will be developed to encourage and support ex situ preservation and continued plant exchange for long-term conservation and humanitarian benefit.


2016 ◽  
Vol 8 (6) ◽  
pp. 65-79
Author(s):  
Atieno Otieno Gloria ◽  
Wasswa Mulumba John ◽  
Seyoum Wedajoo Aseffa ◽  
Jae Lee Myung ◽  
Kiwuka Catherine ◽  
...  

2011 ◽  
Vol 47 (Special Issue) ◽  
pp. S43-S48 ◽  
Author(s):  
A. Börner ◽  
K. Neumann ◽  
B. Kobiljski

It is estimated that world-wide existing germplasm collections contain about 7.5 million accessions of plant genetic resources for food and agriculture. Wheat (Triticum and Aegilops) represents the biggest group comprising 900 000 accessions. However, such a huge number of accessions is hindering a successful exploitation of the germplasm. The creation of core collections representing a wide spectrum of the genetic variation of the whole assembly may help to overcome the problem. Here we demonstrate the successful utilisation of such a core collection for the identification and molecular mapping of genes (Quantitative Trait Loci) determining the agronomic traits flowering time and grain yield, exploiting a marker-trait-association based technique. Significant marker-trait associations were obtained and are presented. The intrachromosomal location of many of these associations coincided with those of already identified major genes or quantitative trait loci, but others were detected in regions where no known genes have been located to date.


2006 ◽  
Vol 4 (1) ◽  
pp. 54-63 ◽  
Author(s):  
Niels P. Louwaars ◽  
Eva Thörn ◽  
José Esquinas-Alcázar ◽  
Shumin Wang ◽  
Abebe Demissie ◽  
...  

Applied genetics combined with practical plant breeding is a powerful tool in agricultural development and for food security. The Green Revolution spurred the world's potential to meet its food, feed and fibre needs at a time when vast regions were notoriously food-insecure. Subsequent adaptations of such strategies, from the late 1980s onwards, in order to develop new plant varieties in a more participatory way, have strengthened the focus on applying technology to farmers' diverse needs, feeding research results into a variety of seed systems. During these developments, there were no major legal impediments to the acquisition of either local or formal knowledge or of the building blocks of plant breeding: genetic resources. The emergence of molecular biology in plant science is creating a wealth of opportunities, both to understand better the limitations of crop production and to use a much wider array of genetic diversity in crop improvement. This ‘Gene Revolution’ needs to incorporate the lessons from the Green Revolution in order to reach its target groups. However, the policy environment has changed. Access to technologies is complicated by the spread of private rights (intellectual property rights), and access to genetic resources by new national access laws. Policies on access to genetic resources have changed from the concept of the ‘Heritage of Mankind’ for use for the benefit of all mankind to ‘National Sovereignty’, based on the Convention on Biological Diversity, for negotiated benefit-sharing between a provider and a user. The Generation Challenge Programme intends to use genomic techniques to identify and use characteristics that are of value to the resource-poor, and is looking for ways to promote freedom-to-operate for plant breeding technologies and materials. Biodiversity provides the basis for the effective use of these genomic techniques. National access regulations usually apply to all biodiversity indiscriminately and may cause obstacles or delays in the use of genetic resources in agriculture. Different policies are being developed in different regions. Some emphasize benefit-sharing, and limit access in order to implement this (the ‘African Model Law’), while others, in recognition of countries' interdependence, provide for facilitated access to all genetic resources under the jurisdiction of countries in the region (the Nordic Region). There are good reasons why the use of agricultural biodiversity needs to be regulated differently from industrial uses of biodiversity. The International Treaty on Plant Genetic Resources for Food and Agriculture, which entered into force in 2004, provides for facilitated access to agricultural genetic resources, at least for the crops that are included in the Treaty's ‘Multilateral System of Access and Benefit-sharing’. Ratification of the Treaty is proceeding apace, and negotiations have entered a critical stage in the development of practical instruments for its implementation. Although the scope of the Treaty is all plant genetic resources for food and agriculture, there are important crops that are not covered by its Multilateral System. Humanitarian licences are being used to provide access for the poor to protected technologies: countries may need to create such a general humanitarian access regime, to ensure the poor have the access they need to agricultural genetic resources.


2021 ◽  
pp. 55-80
Author(s):  
M. Ehsan Dulloo ◽  
Prishnee Bissessur ◽  
Jay Rana

Sign in / Sign up

Export Citation Format

Share Document