Study of the nuclear deformation of some even–even isotopes using Hartree–Fock–Bogoliubov method (effect of the collective motion)

2018 ◽  
Vol 93 (1) ◽  
pp. 75-92
Author(s):  
A. A. Alzubadi ◽  
R. S. Obaid
1973 ◽  
Vol 203 (3) ◽  
pp. 433-472 ◽  
Author(s):  
H. Flocard ◽  
P. Quentin ◽  
A.K. Kerman ◽  
D. Vautherin

2006 ◽  
Vol 15 (08) ◽  
pp. 1779-1788
Author(s):  
XIAN-RONG ZHOU ◽  
H. SAGAWA ◽  
XI-ZHEN ZHANG

In the frame of deformed Skyrme Hartree-Fock (HF) model with pairing correlations, the strong mass number dependence of quadrupole deformations in sd and pf shell nuclei with mass A =(16 ~ 56) is studied as a clear manifestation of the evolution of nuclear deformation in nuclear many-body systems. The competition between the deformation driving particle-vibration coupling and the shell structure is shown by a systematic study on the ratios of the protons to neutrons quadrupole moments in nuclei with T =| T z|=1. The mass number dependence of deformations obtained by deformed HF calculations is compared with the results of shell model and experimental data.


2017 ◽  
Vol 126 (1C) ◽  
pp. 17
Author(s):  
Nguyễn Như Lê ◽  
Trần Viết Nhân Hào

<p class="tomtat1">The microscopic optical potentials have been investigated in the framework of the nuclear structure approach based on the energy-density functional approaches. The effective phenomenological nucleon-nucleon interaction SLy5 is consistently used to obtain the Hartree-Fock single particle states, the collective motion at small amplitudes of the target, and the coupling between the particle and phonons. The role of the weak density dependent interaction is showed. </p>


1976 ◽  
Vol 54 (19) ◽  
pp. 1941-1968 ◽  
Author(s):  
D. J. Rowe ◽  
R. Bassermann

A theory of large amplitude collective motion of a many-particle system is presented, which is relevant, for example, to nuclear fission. The theory is a combination of techniques used in many areas of physics and mathematics. The starting point is the application of the time-dependent Schrödinger equation to generate invariant subspaces of the Hamiltonian in the Hartree–Fock approximation. This is a generalization of the group-theoretical device of generating orbits of a group in the construction of reduced representations. It is shown how solutions of the time-dependent Schrödinger equation can be expressed as instantaneous stationary states of a constrained static Hamiltonian. Thus contact is made with the traditional cranking models and constrained Hartree–Fock theories of large amplitude collective motion. The collective motion is quantized using the Hill–Wheeler–Griffin method of generator coordinates in a basis of generalized coherent states. One is thereby able to exploit much of the theory of harmonic oscillator coherent states, which have been so successfully used in the quantum theory of the laser. The resulting Schrödinger equation for the collective dynamics is expressed both in the Bargmann representation and in the more familiar Schrödinger representation. It is shown that solution of the Schrödinger equation in the small amplitude harmonic approximation reproduces the well-known RPA result. A pilot calculation for 28Si shows that application in large amplitude is also feasible.


Sign in / Sign up

Export Citation Format

Share Document