effective interactions
Recently Published Documents


TOTAL DOCUMENTS

828
(FIVE YEARS 99)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 590
Author(s):  
Acga Cheng ◽  
Nurul Syafiqah Noor Azmi ◽  
Yin Mei Ng ◽  
Didier Lesueur ◽  
Sumiani Yusoff

By the mid-century, urban areas are expected to house two-thirds of the world’s population of approximately 10 billion people. The key challenge will be to provide food for all with fewer farmers in rural areas and limited options for expanding cultivated fields in urban areas, with sustainable soil management being a fundamental criterion for achieving sustainability goals. Understanding how nature works in a fast changing world and fostering nature-based agriculture (such as low-input farming) are crucial for sustaining food systems in the face of worsening urban heat island (UHI) effects and other climatic variables. The best fit for the context is transformative agroecology, which connects ecological networks, sustainable farming approaches, and social movements through change-oriented research and action. Even though agroecology has been practiced for over a century, its potential to address the socioeconomic impact of the food system remained largely unexplored until recently. Agroecological approaches, which involve effective interactions between researchers, policy makers, farmers, and consumers, can improve social cohesion and socioeconomic synergies while reducing the use of various agricultural inputs. This review presents a timeline of agroecology transformation from the past to the present and discusses the possibilities, prospects, and challenges of agroecological urbanism toward a resilient urban future.


2022 ◽  
Author(s):  
Huseynqulu Quliyev ◽  
Nilufer Demirci Saygı ◽  
Ekber Guliyev ◽  
Ali Akbar Kuliev

Abstract The excitation of pygmy dipole resonance (PDR) and giant dipole resonance (GDR) in even-even 154-164Dy isotopes is examined through quasiparticle random-phase approximation (QRPA) with the effective interactions that restores the broken translational and Galilean invariances. In each isotope, an electric response emerges by showing ample distribution at energies below and above 10 MeV. We, therefore, study the transition cross sections and probabilities, photon strength functions, transition strengths, isospin character, and collectivity of the predicted E1 responses.


2022 ◽  
Author(s):  
Hongmei Liu ◽  
Shihao Dang ◽  
Mingdeng Li ◽  
Baogui Ye

Increasing the adsorption sites and effective interactions between sorbents and the targets can improve the solid-phase extraction (SPE) efficiency. Herein, based on the advantages of MOFs and TiO2 nanotubes (TiO2...


2021 ◽  
Vol 12 (4) ◽  
pp. 412-418
Author(s):  
Monir Uzzaman ◽  
Amrin Ahsan ◽  
Mohammad Nasir Uddin

Benzodiazepines are widely used to treat anxiety, insomnia, agitation, seizures, and muscle spasms. It works through the GABAA receptors to promote sleep by inhibiting brainstem monoaminergic arousal pathways. It is safe and effective for short-term use, and arises some crucial side effects based on dose and physical condition. In this investigation, physicochemical properties, molecular docking, and ADMET properties have been studied. Density functional theory with B3LYP/6-311G+(d,p) level of theory was set for geometry optimization and elucidate their thermodynamic, orbital, dipole moment, and electrostatic potential properties. Molecular docking and interaction calculations have performed against human GABAA receptor protein (PDB ID: 4COF) to search the binding affinity and effective interactions of drugs with the receptor protein. ADMET prediction has performed to investigate their absorption, metabolism, and toxic properties. Thermochemical data suggest the thermal stability; the docking result predicts effecting bindings and ADMET calculation disclose non-carcinogenic and relatively harmless phenomena for oral administration of all drugs.


2021 ◽  
Vol 22 (23) ◽  
pp. 13112
Author(s):  
Sergei Evteev ◽  
Dmitry Nilov ◽  
Aleksandra Polenova ◽  
Vytas Švedas

The growing resistance of the influenza virus to widely used competitive neuraminidase inhibitors occupying the active site of the enzyme requires the development of bifunctional compounds that can simultaneously interact with other regulatory sites on the protein surface. When developing such an inhibitor and combining structural fragments that could be located in the sialic acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not only for connecting the fragments, but also to ensure effective interactions with the unique arginine triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated the usefulness of the sulfonamide group in the linker design and the potential advantage of this functional group over other isosteric analogues.


Author(s):  
Dinesh Chintha ◽  
Shivanand Kumar Veesam ◽  
Emanuele Boattini ◽  
Laura Filion ◽  
Sudeep Neelakantan Punnathanam

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmoud Sebtosheikh ◽  
Ali Naji

AbstractUsing Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.


2021 ◽  
Author(s):  
Xiao-Qian Wang ◽  
Xiang-Xiang Sun ◽  
Shan-Gui 周善贵 Zhou

Abstract We study the effects of higher-order deformations βλ (λ = 4,6,8, and 10) on the ground state properties of superheavy nuclei (SHN) near the deformed doubly magic nucleus 270Hs by using the multidimensionally-constrained (MDC) relativistic mean-field (RMF) model with five effective interactions PC-PK1, PK1, NL3∗, DD-ME2, and PKDD. The doubly magic properties of 270Hs are featured by the large energy gaps at N = 162 and Z = 108 in the single-particle spectra. By investigating the binding energies and single-particle levels of270Hs in multidimensional deformation space, we find that the deformation β6 has the greatest impact on the binding energy among these higher-order deformations and influences the shell gaps considerably. Similar conclusions hold for other SHN near 270Hs. Our calculations demonstrate that the deformation β6 must be considered when studying SHN by using MDC-RMF.


Sign in / Sign up

Export Citation Format

Share Document