scholarly journals Characterization of the Geometric Distribution Via Linear Combinations of Observations and of Records

Sankhya A ◽  
2021 ◽  
Author(s):  
Barry C. Arnold ◽  
Jose A. Villasenor

AbstractIn a sequence of independent identically distributed geometric random variables, the sum of the first two record values is distributed as a simple linear combination of geometric variables. It is verified that this distributional property characterizes the geometric distribution. A related characterization conjecture is also discussed. Related discussion in the context of weak records is also provided.

2005 ◽  
Vol 56 (1-4) ◽  
pp. 295-304
Author(s):  
M. Ahsanullah

Summary Upper weak record values from a sequence of independent identically distributed random variables are considered. Several distributional properties of the upper weak records from geometric distribution are presented. Based on these distributional properties some characterizations of the geometric distribution are given.


1983 ◽  
Vol 20 (01) ◽  
pp. 209-212 ◽  
Author(s):  
M. Sreehari

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, X n:n . We prove that if the random variable X2:n – X 1:n is independent of the events [X1:n = m] and [X1:n = k], for fixed k > m > 1, then the Xi 's are geometric. This is related to a characterization problem raised by Arnold (1980).


1983 ◽  
Vol 20 (1) ◽  
pp. 209-212 ◽  
Author(s):  
M. Sreehari

Let X1, X2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X1:n, X2:n, …, Xn:n. We prove that if the random variable X2:n – X1:n is independent of the events [X1:n = m] and [X1:n = k], for fixed k > m > 1, then the Xi's are geometric. This is related to a characterization problem raised by Arnold (1980).


1980 ◽  
Vol 17 (02) ◽  
pp. 570-573 ◽  
Author(s):  
Barry C. Arnold

Let X 1, X 2, …, Xn be independent identically distributed positive integer-valued random variables with order statistics X 1:n , X 2:n , …, Xn :n. If the Xi 's have a geometric distribution then the conditional distribution of Xk +1:n – Xk :n given Xk+ 1:n – Xk :n > 0 is the same as the distribution of X 1:n–k . Also the random variable X 2:n – X 1:n is independent of the event [X 1:n = 1]. Under mild conditions each of these two properties characterizes the geometric distribution.


2010 ◽  
Vol 24 (2) ◽  
pp. 245-262 ◽  
Author(s):  
Tiantian Mao ◽  
Taizhong Hu

The purpose of this article is to present several equivalent characterizations of comparing the largest-order statistics and sample ranges of two sets of n independent exponential random variables with respect to different stochastic orders, where the random variables in one set are heterogeneous and the random variables in the other set are identically distributed. The main results complement and extend several known results in the literature. The geometric distribution can be regarded as the discrete counterpart of the exponential distribution. We also study the orderings of the largest-order statistics from geometric random variables and point out similarities and differences between orderings of the largest-order statistics from geometric variables and from exponential variables.


2005 ◽  
Vol 34 (12) ◽  
pp. 2345-2351 ◽  
Author(s):  
Anna Dembińska ◽  
Fernando López-blázquez

2017 ◽  
Vol 6 (5) ◽  
pp. 132
Author(s):  
M. Ahsanullah ◽  
M. Z. Anis

There are some characterizations of the exponential distribution based on the relation of the maximum of two observations expressed as linear combination of the two observations. In this paper some generalizations of this known characterization of the exponential distribution using the relations between the maximum and minimum of  independent and identically distributed random variables having absolutely continuous (with respect to Lebesgue measure) distribution function will be presented.


Author(s):  
James E. Marengo ◽  
David L. Farnsworth ◽  
Lucas Stefanic

The Irwin-Hall distribution is the distribution of the sum of a finite number of independent identically distributed uniform random variables on the unit interval. Many applications arise since round-off errors have a transformed Irwin-Hall distribution and the distribution supplies spline approximations to normal distributions. We review some of the distribution’s history. The present derivation is very transparent, since it is geometric and explicitly uses the inclusion-exclusion principle. In certain special cases, the derivation can be extended to linear combinations of independent uniform random variables on other intervals of finite length. The derivation adds to the literature about methodologies for finding distributions of sums of random variables, especially distributions that have domains with boundaries so that the inclusion-exclusion principle might be employed.


Sign in / Sign up

Export Citation Format

Share Document