discrete counterpart
Recently Published Documents


TOTAL DOCUMENTS

24
(FIVE YEARS 15)

H-INDEX

4
(FIVE YEARS 1)

2021 ◽  
Vol 30 (3) ◽  
pp. 391-413
Author(s):  
Samira El Yacoubi ◽  
◽  
Théo Plénet ◽  
Sara Dridi ◽  
Franco Bagnoli ◽  
...  

This review article focuses on studying problems of observability and controllability of cellular automata (CAs) considered in the context of control theory, an important feature of which is the adoption of a state-space model. Our work first consists in generalizing the obtained results to systems described by CAs considered as the discrete counterpart of partial differential equations, and in exploring possible approaches to prove controllability and observability. After having introduced the notion of control and observation in cellular automata models, in a similar way to the case of discrete-time distributed parameter systems, we investigate these key concepts of control theory in the case of complex systems. For the controllability issue, the Boolean class is particularly studied and applied to the regional case, while the observability is approached in the general case and related to the reconstructibility problem for linear or nonlinear CAs.


2021 ◽  
pp. 172-214
Author(s):  
Stevan Berber

In this chapter, based on definitions of signal synthesizers and analysers, a general and generic scheme of a discrete communication system is developed in order to deduce practical systems as its special cases. The synthesizer is transferred into a discrete transmitter, and the analyser is used as a correlation receiver followed by an optimum detector. The system structure is presented in terms of mathematical operators and supported by exact mathematical expressions based on the theory of discrete-time stochastic processes. The likelihood function is derived, and the maximum likelihood rule is applied to specify the decision process and construct the optimum detector. A multilevel system and a quadrature phase-shift keying system are deduced as special cases, and the bit error probability expression is derived. For the sake of continuity and completeness in presenting communication systems theory, a generic digital communication system is developed and related to its discrete counterpart.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Eugenia Colafranceschi ◽  
Daniele Oriti

Abstract In recent years, the import of quantum information techniques in quantum gravity opened new perspectives in the study of the microscopic structure of spacetime. We contribute to such a program by establishing a precise correspondence between the quantum information formalism of tensor networks (TN), in the case of projected entangled-pair states (PEPS) generalised to a second-quantized framework, and group field theory (GFT) states, and by showing how, in this quantum gravity approach, discrete spatial manifolds arise as entanglement patterns among quanta of space, having a dual representation in terms of graphs and simplicial complexes. We devote special attention to the implementation and consequences of the label independence of the graphs/networks, corresponding to the indistinguishability of the space quanta and representing a discrete counterpart of the diffeomorphism invariance of a consistent quantum gravity formalism. We also outline a relational setting to recover distinguishability of graph/network vertices at an effective and physical level, in a partial semi-classical limit of the theory.


Author(s):  
Paolo Dulio ◽  
Andrea Frosini ◽  
Simone Rinaldi ◽  
Lama Tarsissi ◽  
Laurent Vuillon

AbstractA remarkable family of discrete sets which has recently attracted the attention of the discrete geometry community is the family of convex polyominoes, that are the discrete counterpart of Euclidean convex sets, and combine the constraints of convexity and connectedness. In this paper we study the problem of their reconstruction from orthogonal projections, relying on the approach defined by Barcucci et al. (Theor Comput Sci 155(2):321–347, 1996). In particular, during the reconstruction process it may be necessary to expand a convex subset of the interior part of the polyomino, say the polyomino kernel, by adding points at specific positions of its contour, without losing its convexity. To reach this goal we consider convexity in terms of certain combinatorial properties of the boundary word encoding the polyomino. So, we first show some conditions that allow us to extend the kernel maintaining the convexity. Then, we provide examples where the addition of one or two points causes a loss of convexity, which can be restored by adding other points, whose number and positions cannot be determined a priori.


2021 ◽  
Vol 76 (2) ◽  
Author(s):  
Leonardo Alese

AbstractGiven a pair of real functions (k, f), we study the conditions they must satisfy for $$k+\lambda f$$ k + λ f to be the curvature in the arc-length of a closed planar curve for all real $$\lambda $$ λ . Several equivalent conditions are pointed out, certain periodic behaviours are shown as essential and a family of such pairs is explicitely constructed. The discrete counterpart of the problem is also studied.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Jacky Cresson ◽  
Fernando Jiménez ◽  
Sina Ober-Blöbaum

<p style='text-indent:20px;'>We prove a Noether's theorem of the first kind for the so-called <i>restricted fractional Euler-Lagrange equations</i> and their discrete counterpart, introduced in [<xref ref-type="bibr" rid="b26">26</xref>,<xref ref-type="bibr" rid="b27">27</xref>], based in previous results [<xref ref-type="bibr" rid="b11">11</xref>,<xref ref-type="bibr" rid="b35">35</xref>]. Prior, we compare the restricted fractional calculus of variations to the <i>asymmetric fractional calculus of variations</i>, introduced in [<xref ref-type="bibr" rid="b14">14</xref>], and formulate the restricted calculus of variations using the <i>discrete embedding</i> approach [<xref ref-type="bibr" rid="b12">12</xref>,<xref ref-type="bibr" rid="b18">18</xref>]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.</p>


2021 ◽  
Vol 9 ◽  
Author(s):  
Pablo A. Ferrari ◽  
Chi Nguyen ◽  
Leonardo T. Rolla ◽  
Minmin Wang

Abstract The box-ball system (BBS) was introduced by Takahashi and Satsuma as a discrete counterpart of the Korteweg-de Vries equation. Both systems exhibit solitons whose shape and speed are conserved after collision with other solitons. We introduce a slot decomposition of ball configurations, each component being an infinite vector describing the number of size k solitons in each k-slot. The dynamics of the components is linear: the kth component moves rigidly at speed k. Let $\zeta $ be a translation-invariant family of independent random vectors under a summability condition and $\eta $ be the ball configuration with components $\zeta $ . We show that the law of $\eta $ is translation invariant and invariant for the BBS. This recipe allows us to construct a large family of invariant measures, including product measures and stationary Markov chains with ball density less than $\frac {1}{2}$ . We also show that starting BBS with an ergodic measure, the position of a tagged k-soliton at time t, divided by t converges as $t\to \infty $ to an effective speed $v_k$ . The vector of speeds satisfies a system of linear equations related with the generalised Gibbs ensemble of conservative laws.


2020 ◽  
Vol 6 ◽  
pp. e257
Author(s):  
Xueyang Yao ◽  
Natalie Baddour

The theory of the continuous two-dimensional (2D) Fourier Transform in polar coordinates has been recently developed but no discrete counterpart exists to date. In the first part of this two-paper series, we proposed and evaluated the theory of the 2D Discrete Fourier Transform (DFT) in polar coordinates. The theory of the actual manipulated quantities was shown, including the standard set of shift, modulation, multiplication, and convolution rules. In this second part of the series, we address the computational aspects of the 2D DFT in polar coordinates. Specifically, we demonstrate how the decomposition of the 2D DFT as a DFT, Discrete Hankel Transform and inverse DFT sequence can be exploited for coding. We also demonstrate how the proposed 2D DFT can be used to approximate the continuous forward and inverse Fourier transform in polar coordinates in the same manner that the 1D DFT can be used to approximate its continuous counterpart.


2020 ◽  
Vol 15 ◽  
pp. 9
Author(s):  
Razvan Teodorescu

The Laplacian Growth (LG) model is known as a universality class of scale-free aggregation models in two dimensions, characterized by classical integrability and featuring finite-time boundary singularity formation. A discrete counterpart, Diffusion-Limited Aggregation (or DLA), has a similar local growth law, but significantly different global behavior. For both LG and DLA, a proper description for the scaling properties of long-time solutions is not available yet. In this note, we outline a possible approach towards finding the correct theory yielding a regularized LG and its relation to DLA.


Sign in / Sign up

Export Citation Format

Share Document