A study of turbine failure pattern: a model optimization using machine learning

Author(s):  
Bhaskar Roy ◽  
Debabrata Bera ◽  
Somya Nigam ◽  
S. K. Upadhyay
2020 ◽  
Author(s):  
Muammar El Khatib ◽  
Wibe de Jong

ML4Chem is an open-source machine learning library for chemistry and materials science. It provides an extendable platform to develop and deploy machine learning models and pipelines and is targeted to the non-expert and expert users. ML4Chem follows user-experience design and offers the needed tools to go from data preparation to inference. Here we introduce its atomistic module for the implementation, deployment, and reproducibility of atom-centered models. This module is composed of six core building blocks: data, featurization, models, model optimization, inference, and visualization. We present their functionality and ease of use with demonstrations utilizing neural networks and kernel ridge regression algorithms.


2020 ◽  
Author(s):  
Muammar El Khatib ◽  
Wibe de Jong

ML4Chem is an open-source machine learning library for chemistry and materials science. It provides an extendable platform to develop and deploy machine learning models and pipelines and is targeted to the non-expert and expert users. ML4Chem follows user-experience design and offers the needed tools to go from data preparation to inference. Here we introduce its atomistic module for the implementation, deployment, and reproducibility of atom-centered models. This module is composed of six core building blocks: data, featurization, models, model optimization, inference, and visualization. We present their functionality and ease of use with demonstrations utilizing neural networks and kernel ridge regression algorithms.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Author(s):  
Mohammed J. Zaki ◽  
Wagner Meira, Jr
Keyword(s):  

2020 ◽  
Author(s):  
Marc Peter Deisenroth ◽  
A. Aldo Faisal ◽  
Cheng Soon Ong
Keyword(s):  

Author(s):  
Lorenza Saitta ◽  
Attilio Giordana ◽  
Antoine Cornuejols

Sign in / Sign up

Export Citation Format

Share Document