The existence results and Tikhonov regularization method for generalized mixed variational inequalities in Banach spaces

2016 ◽  
Vol 7 (2) ◽  
pp. 151-163 ◽  
Author(s):  
Min Wang
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lu-Chuan Ceng ◽  
Yeong-Cheng Liou ◽  
Ching-Feng Wen ◽  
Hui-Ying Hu ◽  
Long He ◽  
...  

We introduce a new concept of Hadamard well-posedness of a generalized mixed variational inequality in a Banach space. The relations between the Levitin–Polyak well-posedness and Hadamard well-posedness for a generalized mixed variational inequality are studied. The characterizations of Hadamard well-posedness for a generalized mixed variational inequality are established.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Yiran He

This paper aims to establish the Tikhonov regularization theory for set-valued variational inequalities. For this purpose, we firstly prove a very general existence result for set-valued variational inequalities, provided that the mapping involved has the so-called variational inequality property and satisfies a rather weak coercivity condition. The result on the Tikhonov regularization improves some known results proved for single-valued mapping.


2012 ◽  
Vol 2012 ◽  
pp. 1-38
Author(s):  
Lu-Chuan Ceng ◽  
Ching-Feng Wen

We consider an extension of the notion of well-posedness by perturbations, introduced by Zolezzi (1995, 1996) for a minimization problem, to a class of generalized mixed variational inequalities in Banach spaces, which includes as a special case the class of mixed variational inequalities. We establish some metric characterizations of the well-posedness by perturbations. On the other hand, it is also proven that, under suitable conditions, the well-posedness by perturbations of a generalized mixed variational inequality is equivalent to the well-posedness by perturbations of the corresponding inclusion problem and corresponding fixed point problem. Furthermore, we derive some conditions under which the well-posedness by perturbations of a generalized mixed variational inequality is equivalent to the existence and uniqueness of its solution.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document