scholarly journals Positive energy representations of Sobolev diffeomorphism groups of the circle

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Sebastiano Carpi ◽  
Simone Del Vecchio ◽  
Stefano Iovieno ◽  
Yoh Tanimoto

AbstractWe show that any positive energy projective unitary representation of $$\mathrm{Diff}_+(S^1)$$ Diff + ( S 1 ) extends to a strongly continuous projective unitary representation of the fractional Sobolev diffeomorphisms $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) for any real $$s>3$$ s > 3 , and in particular to $$C^k$$ C k -diffeomorphisms $$\mathrm{Diff}_+^k(S^1)$$ Diff + k ( S 1 ) with $$k\ge 4$$ k ≥ 4 . A similar result holds for the universal covering groups provided that the representation is assumed to be a direct sum of irreducibles. As an application we show that a conformal net of von Neumann algebras on $$S^1$$ S 1 is covariant with respect to $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) , $$s > 3$$ s > 3 . Moreover every direct sum of irreducible representations of a conformal net is also $$\mathcal {D}^s(S^1)$$ D s ( S 1 ) -covariant.

1995 ◽  
Vol 07 (01) ◽  
pp. 57-71 ◽  
Author(s):  
R. BRUNETTI ◽  
D. GUIDO ◽  
R. LONGO

The Bisognano-Wichmann property on the geometric behavior of the modular group of the von Neumann algebras of local observables associated to wedge regions in Quantum Field Theory is shown to provide an intrinsic sufficient criterion for the existence of a covariant action of the (universal covering of) the Poincaré group. In particular this gives, together with our previous results, an intrinsic characterization of positive-energy conformal pre-cosheaves of von Neumann algebras. To this end we adapt to our use Moore theory of central extensions of locally compact groups by polish groups, selecting and making an analysis of a wider class of extensions with natural measurable properties and showing henceforth that the universal covering of the Poincaré group has only trivial central extensions (vanishing of the first and second order cohomology) within our class.


2017 ◽  
Vol 114 (51) ◽  
pp. 13418-13423 ◽  
Author(s):  
André G. Henriques

We answer the questions, “What does Chern–Simons theory assign to a point?” and “What kind of mathematical object does Chern–Simons theory assign to a point?” Our answer to the first question is representations of the based loop group. More precisely, we identify a certain class of projective unitary representations of the based loop group 𝛀G. We define the fusion product of such representations, and we prove that, modulo certain conjectures, the Drinfel’d center of that representation category of 𝛀G is equivalent to the category of positive energy representations of the free loop group LG.† The abovementioned conjectures are known to hold when the gauge group is abelian or of type A1. Our answer to the second question is bicommutant categories. The latter are higher categorical analogs of von Neumann algebras: They are tensor categories that are equivalent to their bicommutant inside Bim(R), the category of bimodules over a hyperfinite 𝐼𝐼𝐼1 factor. We prove that, modulo certain conjectures, the category of representations of the based loop group is a bicommutant category. The relevant conjectures are known to hold when the gauge group is abelian or of type An.


2004 ◽  
Vol 56 (4) ◽  
pp. 843-870 ◽  
Author(s):  
Zhong-Jin Ruan

AbstractWe study the type decomposition and the rectangular AFD property for W*-TRO’s. Like von Neumann algebras, every W*-TRO can be uniquely decomposed into the direct sum of W*- TRO's of type I, type II, and type III. We may further considerW*-TRO's of type Im,n with cardinal numbers m and n, and considerW*-TRO's of type IIλ,μ with λ, μ = 1 or ∞. It is shown that every separable stable W*-TRO (which includes type I∞, ∞, type II∞, ∞ and type III) is TRO-isomorphic to a von Neumann algebra. We also introduce the rectangular version of the approximately finite dimensional property for W*-TRO’s. One of our major results is to show that a separable W*-TRO is injective if and only if it is rectangularly approximately finite dimensional. As a consequence of this result, we show that a dual operator space is injective if and only if its operator predual is a rigid rectangular space (equivalently, a rectangular space).


2019 ◽  
Author(s):  
Serban-Valentin Stratila ◽  
Laszlo Zsido

2018 ◽  
Vol 329 ◽  
pp. 819-850 ◽  
Author(s):  
Ionuţ Chifan ◽  
Adrian Ioana

Sign in / Sign up

Export Citation Format

Share Document