scholarly journals A series expansion for generalized harmonic functions

2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Markus Klintborg ◽  
Anders Olofsson

AbstractWe consider a class of generalized harmonic functions in the open unit disc in the complex plane. Our main results concern a canonical series expansion for such functions. Of particular interest is a certain individual generalized harmonic function which suitably normalized plays the role of an associated Poisson kernel.

1987 ◽  
Vol 30 (3) ◽  
pp. 471-477 ◽  
Author(s):  
F. F. Bonsall

For what sequences {an} of points of the open unit disc D does there exist a constant k such thatfor all bounded harmonic functions f on D?


2021 ◽  
Vol 6 (12) ◽  
pp. 13235-13246
Author(s):  
Murugusundaramoorthy Gangadharan ◽  
◽  
Vijaya Kaliyappan ◽  
Hijaz Ahmad ◽  
K. H. Mahmoud ◽  
...  

<abstract><p>In this paper, we examine a connotation between certain subclasses of harmonic univalent functions by applying certain convolution operator regarding Mittag-Leffler function. To be more precise, we confer such influences with Janowski-type harmonic univalent functions in the open unit disc $ \mathbb{D}. $</p></abstract>


1989 ◽  
Vol 32 (3) ◽  
pp. 431-447 ◽  
Author(s):  
F. F. Bonsall ◽  
D. Walsh

For z in D and ζ in ∂D, we denote by pz(ζ) the Poisson kernel (1 − │z│2)│1 − z̄ζ−2 for the open unit disc D. We ask for what countable sets {an:n∈ℕ} of points of D there exist complex numbers λn withby which we mean that the series converges to zero in the norm of L1(∂D).


2009 ◽  
Vol 40 (1) ◽  
pp. 31-39 ◽  
Author(s):  
Aini Janteng ◽  
Suzeini Abdul Halim

Let $ \mathcal{H} $ denote the class of functions $ f $ which are harmonic and univalent in the open unit disc $ {D=\{z:|z|<1\}} $. This paper defines and investigates a family of complex-valued harmonic functions that are orientation preserving and univalent in $ \mathcal{D} $ and are related to the functions convex of order $ \beta(0\leq \beta <1) $, with respect to symmetric points. We obtain coefficient conditions, growth result, extreme points, convolution and convex combinations for the above harmonic functions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
R. M. El-Ashwah

We have studied subclass of multivalent harmonic functions with missing coefficients in the open unit disc and obtained the basic properties such as coefficient characterization and distortion theorem, extreme points, and convolution.


2010 ◽  
Vol 41 (3) ◽  
pp. 261-269 ◽  
Author(s):  
K. K. Dixit ◽  
Saurabh Porwal

Complex-valued harmonic functions that are univalent and sense-preserving in the open unit disc $U$ can be written in the form $f=h+\bar g$, where $h$ and $g$ are analytic in $U$. In this paper authors introduce the class, $R_H(\beta)$, $(1<\beta \le 2)$ consisting of harmonic univalent functions $f=h+\bar g$, where $h$ and $g$ are of the form $ h(z)=z+ \sum_{k=2}^\infty |a_k|z^k $ and $ g(z)= \sum_{k=1}^\infty |b_k| z^k $ for which $\Re\{h'(z)+g'(z)\}<\beta$. We obtain distortion bounds extreme points and radii of convexity for functions belonging to this class and discuss a class  preserving integral operator. We also show that class studied in this paper is closed under convolution and convex combinations.


2002 ◽  
Vol 45 (1) ◽  
pp. 229-239 ◽  
Author(s):  
Rikio Yoneda

AbstractWe characterize the Bloch space and the Besov spaces of harmonic functions on the open unit disc $D$ by using the following oscillation:$$ \sup_\{\beta(z,w)\ltr\}(1-|z|^2)^{\alpha}(1-|w|^2)^{\beta}\biggl|\frac{\hat{D}^{(n-1)}h(z)-\hat{D}^{(n-1)}h(w)}{z-w}\biggr|, $$where $\alpha+\beta=n$, $\alpha,\beta\in\mathbb{R}$ and $\displaystyle{\hat{D}^{(n)}=(\partial^{n}/\partial^{n}z+\partial^{n}/\partial^{n}\bar{z})}$.AMS 2000 Mathematics subject classification: Primary 46E15


2012 ◽  
Vol 55 (2) ◽  
pp. 507-511
Author(s):  
Takahiko Nakazi ◽  
Takanori Yamamoto

AbstractLet H1/2 be the Hardy space on the open unit disc. For two non-zero functions f and g in H1/2, we study the relation between f and g when f/g ≥ 0 a.e. on ∂D. Then we generalize a theorem of Neuwirth and Newman and Helson and Sarason with a simple proof.


2019 ◽  
Vol 11 (1) ◽  
pp. 5-17 ◽  
Author(s):  
Om P. Ahuja ◽  
Asena Çetinkaya ◽  
V. Ravichandran

Abstract We study a family of harmonic univalent functions in the open unit disc defined by using post quantum calculus operators. We first obtained a coefficient characterization of these functions. Using this, coefficients estimates, distortion and covering theorems were also obtained. The extreme points of the family and a radius result were also obtained. The results obtained include several known results as special cases.


2019 ◽  
Vol 28 (1) ◽  
pp. 85-90
Author(s):  
YASAR POLATOGLU ◽  
◽  
ASENA CETINKAYA ◽  
OYA MERT ◽  
◽  
...  

In the present paper, we introduce a new subclass of normalized analytic starlike functions by using bounded radius rotation associated with q- analogues in the open unit disc \mathbb D. We investigate growth theorem, radius of starlikeness and coefficient estimate for the new subclass of starlike functions by using bounded radius rotation associated with q- analogues denoted by \mathcal{R}_k(q), where k\geq2, q\in(0,1).


Sign in / Sign up

Export Citation Format

Share Document