scholarly journals On the Davis-Wielandt shell of an operator and the Davis-Wielandt index of a normed linear space

Author(s):  
Pintu Bhunia ◽  
Debmalya Sain ◽  
Kallol Paul
1972 ◽  
Vol 13 (2) ◽  
pp. 167-170 ◽  
Author(s):  
W. G. Dotson

A self-mapping T of a subset C of a normed linear space is said to be non-expansive provided ║Tx — Ty║ ≦ ║x – y║ holds for all x, y ∈ C. There has been a number of recent results on common fixed points of commutative families of nonexpansive mappings in Banach spaces, for example see DeMarr [6], Browder [3], and Belluce and Kirk [1], [2]. There have also been several recent results concerning common fixed points of two commuting mappings, one of which satisfies some condition like nonexpansiveness while the other is only continuous, for example see DeMarr [5], Jungck [8], Singh [11], [12], and Cano [4]. These results, with the exception of Cano's, have been confined to mappings from the reals to the reals. Some recent results on common fixed points of commuting analytic mappings in the complex plane have also been obtained, for example see Singh [13] and Shields [10].


2011 ◽  
Vol 54 (4) ◽  
pp. 726-738
Author(s):  
M. I. Ostrovskii

AbstractLet BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection P: Y → X such that P(BY ) ⊂ A. Each finite dimensional normed space has a minimal-volume sufficient enlargement that is a parallelepiped; some spaces have “exotic” minimal-volume sufficient enlargements. The main result of the paper is a characterization of spaces having “exotic” minimal-volume sufficient enlargements in terms of Auerbach bases.


2019 ◽  
Vol 484 (2) ◽  
pp. 131-133
Author(s):  
A. R. Alimov ◽  
E. V. Shchepin

A direction d is called a tangent direction to the unit sphere S of a normed linear space s  S and lin(s + d) is a tangent line to the sphere S at s imply that lin(s + d) is a one-sided tangent to the sphere S, i. e., it is the limit of secant lines at s. A set M is called convex with respect to a direction d if [x, y]  M whenever x, y in M, (y - x) || d. We show that in a normed linear space an arbitrary sun (in particular, a boundedly compact Chebyshev set) is convex with respect to any tangent direction of the unit sphere.


1971 ◽  
Vol 12 (1) ◽  
pp. 106-114 ◽  
Author(s):  
J. R. Giles

The purpose of this paper is to show that the various differentiability conditions for the norm of a normed linear space can be characterised by continuity conditions for a certain mapping from the space into its dual. Differentiability properties of the norm are often more easily handled using this characterisation and to demonstrate this we give somewhat more direct proofs of the reflexivity of a Banach space whose dual norm is strongly differentiable, and the duality of uniform rotundity and uniform strong differentiability of the norm for a Banach space.


Sign in / Sign up

Export Citation Format

Share Document