Depth-Averaged Velocity and Boundary Shear Stress Prediction in Asymmetric Compound Channels

2017 ◽  
Vol 42 (9) ◽  
pp. 3849-3862 ◽  
Author(s):  
K. Devi ◽  
K. K. Khatua
2015 ◽  
Vol 4 ◽  
pp. 812-818 ◽  
Author(s):  
Sovan Sankalp ◽  
Kishanjit. K. Khatua ◽  
Arpan Pradhan

2016 ◽  
Vol 78 (9-4) ◽  
Author(s):  
Zulkiflee Ibrahim ◽  
Zulhilmi Ismail ◽  
Sobri Harun ◽  
Koji Shiono ◽  
Nazirah Mohd. Zuki ◽  
...  

Frequent floods around the globe including recent events in several states in Malaysia have damaged the residential properties, infrastructures and crops or even deaths. Clearing vegetations or trees on the floodplain has been pointed out as a contributing factor to the damages. Thus, the influence of floodplain vegetation on the river hydraulics during flooding must be better understood. The hydraulics of flood flows in non-erodible vegetated meandering channel was experimented in the laboratory where two-lined steel rods were installed along a riparian zone to simulate as trees. The stage-discharge relationship, flow resistance, depth-averaged velocity, streamwise vorticity and boundary shear stress patterns during shallow and deep flood inundations were studied. The findings showed that floodplain vegetation had increased the channel flow depth by 32% and its flow resistance. The velocity in vegetated zone was lowered and the shear stress reduced by 86.5% to 91% along the river meander. In addition, the trees also limit flow interaction between main channel and floodplain


2013 ◽  
Vol 20 (2) ◽  
pp. 161-168 ◽  
Author(s):  
M. Patnaik ◽  
K.C. Patra ◽  
K.K. Khatua ◽  
L. Mohanty

Sign in / Sign up

Export Citation Format

Share Document