boundary shear
Recently Published Documents


TOTAL DOCUMENTS

239
(FIVE YEARS 29)

H-INDEX

32
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Bandita Naik ◽  
Vijay Kaushik ◽  
Munendra Kumar

Abstract The computation of the boundary shear stress distribution in an open channel flow is required for a variety of applications, including the flow resistance relationship and the construction of stable channels. The river breaches the main channel and spills across the floodplain during overbank flow conditions on both sides. Due to the momentum shift between the primary channel and adjacent floodplains, the flow structure in such compound channels becomes complicated. This has a profound impact on the shear stress distribution in the floodplain and main channel subsections. In addition, agriculture and development activities have occurred in floodplain parts of a river system. As a consequence, the geometry of the floodplain changes over the length of the flow, resulting in a converging compound channel. Traditional formulas, which rely heavily on empirical approaches, are ineffective in predicting shear force distribution with high precision. As a result, innovative and precise approaches are still in great demand. The boundary shear force carried by floodplains is estimated by gene expression programming (GEP) in this paper. In terms of non-dimensional geometric and flow variables, a novel equation is constructed to forecast boundary shear force distribution. The proposed GEP-based method is found to be best when compared to conventional methods. The findings indicate that the predicted percentage shear force carried by floodplains determined using GEP is in good agreement with the experimental data compared to the conventional formulas (R2 = 0.96 and RMSE = 3.395 for the training data and R2 = 0.95 and RMSE = 4.022 for the testing data).


2021 ◽  
Vol 7 (36) ◽  
Author(s):  
Qi Zhu ◽  
Lingyi Kong ◽  
Haiming Lu ◽  
Qishan Huang ◽  
Yingbin Chen ◽  
...  
Keyword(s):  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kazuo Mizoguchi ◽  
Shin-ichi Uehara ◽  
Takehiro Hirose ◽  
Sachiko Iizuka

AbstractThick sediment layers frequently cover the Japan islands’ surface, and their frictional properties significantly affect the shallow slip behavior that occurs during earthquakes. However, laboratory data on the properties of the shallow zone remain limited. We collected tuff breccia samples from deep borehole cores in the Miocene “Green Tuff” formation, a major surface cover, and performed velocity-stepping friction tests on these samples under in situ stresses of 2 to 20 MPa to assess the velocity dependence of their frictional strength. The samples exhibit predominantly frictionally stable, velocity-strengthening behavior over the range of normal stresses tested, which supports the hypothesis that shallow sediment layers are seismically quiescent. This result is consistent with the low seismicity and attenuation of coseismic slip occurring in the shallow zone that is observed during regional earthquakes. Microstructural observations of the postmortem samples using optical and scanning electron microscopes indicate a fabric transition from boundary shear localization to distributed cataclastic flow with increasing normal stress. Our laboratory investigation of the depth-variable distribution of the frictional velocity dependence of a shallow sediment layer would provide further insight into the mechanical role for earthquake rupture dynamics and shallow seismicity.


Author(s):  
Jake P. Mulholland ◽  
John M. Peters ◽  
Hugh Morrison

AbstractThe influence of vertical wind shear on updraft entrainment in squall lines is not well understood. To address this knowledge gap, a suite of high-resolution idealized numerical model simulations of squall lines were run in various vertical wind shear (hereafter “shear”) environments to study the effects of shear on entrainment in deep convective updrafts. Low-level horizontal mass flux into the leading edge of the cold pool was strongest in the simulations with the strongest low-level shear. These simulations consequently displayed wider updrafts, less entrainment-driven dilution, and larger buoyancy than the simulations with comparatively weak low-level shear. An analysis of vertical accelerations along trajectories that passed through updrafts showed larger net accelerations from buoyancy in the simulations with stronger low-level shear, which demonstrates how less entrainment-driven dilution equated to stronger updrafts. The effects of upper-level shear on entrainment and updraft vertical velocities were generally less pronounced than the effects of low-level shear. We argue that in addition to the outflow boundary-shear interactions and their effect on updraft tilt established by previous authors, decreased entrainment-driven dilution is yet another beneficial effect of strong low-level shear on squall line updraft intensity.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1001
Author(s):  
Juan Alfonso Figuérez ◽  
Álvaro Galán ◽  
Javier González

A 2D streamwise velocity model based on the Reynolds Averaged Navier–Stokes (RANS) is a useful approach to predict the boundary shear stress and the streamwise velocity in a free surface stream where secondary flows are not relevant. Boundary conditions treatment is a key aspect implementing these models. A low computational cost and fully predictive numerical model with a novel treatment of boundary conditions is presented. The main features of the modified model are the employment of a modified law of the wall valid for any roughness condition, the estimation of the boundary shear stress is done only focusing on the near-contour region, the use of a full-predictive physical based model for the eddy viscosity distribution and the incorporation of the free surface shear stress due to water–air interface. The validation of the proposed changes was performed with a substantial number of experimental cases available in the literature using different cross-section shapes (circular, rectangular, trapezoidal and compound section) and roughness condition with quite good agreement. Preliminary results suggest that the influence of the free surface boundary layer has a significant impact on the results for both the streamwise velocity and boundary shear stress in windy conditions. The proposed approach allows its considerations in practical applications.


2021 ◽  
Author(s):  
Stephan Niewerth ◽  
Francisco Núñez-González ◽  
Toni Llull

<p>The entrainment and transport of sediment by hydrodynamic mechanisms is strongly related to bed shear stress exerted by flow. Therefore, to quantify sediment transport and to determine sediment incipient motion conditions, accurate estimations of bed shear stress are required. Most of the existing methods used in hydraulics and river engineering to determine bed shear stress are indirect, and are mostly restricted to limited flow conditions or contain a large degree of uncertainty. Although devices to perform direct measurements of boundary shear stress exist, they are normally based on expensive technology. We developed a shear plate for direct shear stress measurements, using relatively low cost components. In this work we present preliminary results of measurements performed with the new shear plate, to characterize the bottom shear stress generated by a ship propeller. The data result in the expected quadratic relation between bed shear stress and jet velocities, and also give evidence of a good reproducibility. We show that the new shear plate appears to be a promising device for reliable measurements of submerged boundary shear stress under a wide range of environments and flow conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document