Special thematic issue in “Biomass Conversion and Biorefinery” “Advances in catalytic biomass fast pyrolysis and bio-oil upgrading”

2017 ◽  
Vol 7 (3) ◽  
pp. 275-276 ◽  
Author(s):  
Eleni Heracleous ◽  
Angelos Lappas ◽  
David Serrano
Fuel ◽  
2017 ◽  
Vol 207 ◽  
pp. 71-84 ◽  
Author(s):  
Chamseddine Guizani ◽  
Sylvie Valin ◽  
Joseph Billaud ◽  
Marine Peyrot ◽  
Sylvain Salvador

2013 ◽  
Vol 24 ◽  
pp. 66-72 ◽  
Author(s):  
Le Zhang ◽  
Ronghou Liu ◽  
Renzhan Yin ◽  
Yuanfei Mei

2010 ◽  
Vol 24 (10) ◽  
pp. 5669-5676 ◽  
Author(s):  
Hanisom Abdullah ◽  
Daniel Mourant ◽  
Chun-Zhu Li ◽  
Hongwei Wu

Author(s):  
J. Rhett Mayor ◽  
Alexander Williams

The search for fossil fuel alternatives has been one of increasing interest in recent years and one method which shows evidence of feasibility on a large scale is the production of bio-oil through the pyrolysis of biomass. In order to mathematically characterize biomass pyrolysis reactions for the purpose of process modeling, reaction descriptors in the form of Arrhenius coefficients are frequently utilized. Due to the complexity and inhomogeneity of biomass molecular structures, strictly analytically derived Arrhenius coefficients are not capable of predicting pyrolysis behaviors and outcomes. Typically thermogravimetric analysis (TGA) is employed as a method of extracting mass conversion data as a function of temperature from which bulk reaction descriptors following the form of Arrhenius reaction coefficients are derived. The preceding time and temperature history, however, will have a significant impact on the biomass conversion processes at each subsequent data point. This renders derived process predictors from TGA incapable of approximating fast pyrolysis reactions which have a markedly different time and temperature history than is seen utilizing TGA methods. Experimentally derived reaction descriptors of the Arrhenius form for the fast pyrolysis of biomass have been investigated utilizing a novel isothermal fast pyrolysis reactor. Multiple reaction durations and reaction temperatures for Pinus Taeda were tested resulting in measurements of biomass conversion. Reaction coefficients derived from the data are compared to coefficients derived utilizing TGA data and their predictions for mass conversion are contrasted.


2018 ◽  
Vol 168 ◽  
pp. 98-106 ◽  
Author(s):  
Fábio Codignole Luz ◽  
Stefano Cordiner ◽  
Alessandro Manni ◽  
Vincenzo Mulone ◽  
Vittorio Rocco

Sign in / Sign up

Export Citation Format

Share Document