Identification of temporal and spatial patterns of river water quality parameters using NLPCA and multivariate statistical techniques

2019 ◽  
Vol 17 (5) ◽  
pp. 2977-2994
Author(s):  
M. Rezaali ◽  
A. Karimi ◽  
N. Moghadam Yekta ◽  
R. Fouladi Fard
2014 ◽  
Vol 17 (2) ◽  
pp. 50-60
Author(s):  
Ky Minh Nguyen ◽  
Lam Hoang Nguyen

The aims of this research are to assess water quality by organic and nutrient matters and identifying the environmental pressures, examine the impact of the loads to Nhu Y River, Thua Thien-Hue Province. Five stations were sampled at Nhu Y River, the research had monitoring of water quality parameters such as Temperature (Temp), Dissolved Oxygen (DO), Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Nitrate (NO3-) and Phosphate (PO43-). The research used multivariate statistical techniques such as correlation analysis, principal component analysis (PCA) and cluster analysis (CA) to assess water quality. The correlation analysis shown a strong positive correlation exists between water quality parameters such as TempDO and BOD5COD (p<0.01). The PCA technique was applied to water quality data sets, which was obtained from Nhu Y River and the results show that the indices which has changed water quality. The results of the PCA using a varimax rotation technique were illustrated with two principal components (PC) and accounts for 62.207% of the overall total variance. The first PC accounted for 40.873% of the total variance, which was loaded with Temp, DO, BOD5 and COD. The second PC consists of NO3- and PO43- which accounts for 21.334% of the total variance, it can be due to the discharge of agricultural activities. Similarly, the CA has identified two major clusters involving: BOD5, COD, Temp, DO (the first cluster) and NO3-, PO43- (the second cluster).


Sign in / Sign up

Export Citation Format

Share Document