scholarly journals Mixing rates for Hamiltonian Monte Carlo algorithms in finite and infinite dimensions

Author(s):  
Nathan E. Glatt-Holtz ◽  
Cecilia F. Mondaini
Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. R177-R194 ◽  
Author(s):  
Mattia Aleardi ◽  
Alessandro Salusti

A reliable assessment of the posterior uncertainties is a crucial aspect of any amplitude versus angle (AVA) inversion due to the severe ill-conditioning of this inverse problem. To accomplish this task, numerical Markov chain Monte Carlo algorithms are usually used when the forward operator is nonlinear. The downside of these algorithms is the considerable number of samples needed to attain stable posterior estimations especially in high-dimensional spaces. To overcome this issue, we assessed the suitability of Hamiltonian Monte Carlo (HMC) algorithm for nonlinear target- and interval-oriented AVA inversions for the estimation of elastic properties and associated uncertainties from prestack seismic data. The target-oriented approach inverts the AVA responses of the target reflection by adopting the nonlinear Zoeppritz equations, whereas the interval-oriented method inverts the seismic amplitudes along a time interval using a 1D convolutional forward model still based on the Zoeppritz equations. HMC uses an artificial Hamiltonian system in which a model is viewed as a particle moving along a trajectory in an extended space. In this context, the inclusion of the derivative information of the misfit function makes possible long-distance moves with a high probability of acceptance from the current position toward a new independent model. In our application, we adopt a simple Gaussian a priori distribution that allows for an analytical inclusion of geostatistical constraints into the inversion framework, and we also develop a strategy that replaces the numerical computation of the Jacobian with a matrix operator analytically derived from a linearization of the Zoeppritz equations. Synthetic and field data inversions demonstrate that the HMC is a very promising approach for Bayesian AVA inversion that guarantees an efficient sampling of the model space and retrieves reliable estimations and accurate uncertainty quantifications with an affordable computational cost.


2021 ◽  
Vol 32 (1) ◽  
Author(s):  
L. Mihaela Paun ◽  
Dirk Husmeier

AbstractWe propose to accelerate Hamiltonian and Lagrangian Monte Carlo algorithms by coupling them with Gaussian processes for emulation of the log unnormalised posterior distribution. We provide proofs of detailed balance with respect to the exact posterior distribution for these algorithms, and validate the correctness of the samplers’ implementation by Geweke consistency tests. We implement these algorithms in a delayed acceptance (DA) framework, and investigate whether the DA scheme can offer computational gains over the standard algorithms. A comparative evaluation study is carried out to assess the performance of the methods on a series of models described by differential equations, including a real-world application of a 1D fluid-dynamics model of the pulmonary blood circulation. The aim is to identify the algorithm which gives the best trade-off between accuracy and computational efficiency, to be used in nonlinear DE models, which are computationally onerous due to repeated numerical integrations in a Bayesian analysis. Results showed no advantage of the DA scheme over the standard algorithms with respect to several efficiency measures based on the effective sample size for most methods and DE models considered. These gradient-driven algorithms register a high acceptance rate, thus the number of expensive forward model evaluations is not significantly reduced by the first emulator-based stage of DA. Additionally, the Lagrangian Dynamical Monte Carlo and Riemann Manifold Hamiltonian Monte Carlo tended to register the highest efficiency (in terms of effective sample size normalised by the number of forward model evaluations), followed by the Hamiltonian Monte Carlo, and the No U-turn sampler tended to be the least efficient.


1988 ◽  
Vol 102 ◽  
pp. 79-81
Author(s):  
A. Goldberg ◽  
S.D. Bloom

AbstractClosed expressions for the first, second, and (in some cases) the third moment of atomic transition arrays now exist. Recently a method has been developed for getting to very high moments (up to the 12th and beyond) in cases where a “collective” state-vector (i.e. a state-vector containing the entire electric dipole strength) can be created from each eigenstate in the parent configuration. Both of these approaches give exact results. Herein we describe astatistical(or Monte Carlo) approach which requires onlyonerepresentative state-vector |RV> for the entire parent manifold to get estimates of transition moments of high order. The representation is achieved through the random amplitudes associated with each basis vector making up |RV>. This also gives rise to the dispersion characterizing the method, which has been applied to a system (in the M shell) with≈250,000 lines where we have calculated up to the 5th moment. It turns out that the dispersion in the moments decreases with the size of the manifold, making its application to very big systems statistically advantageous. A discussion of the method and these dispersion characteristics will be presented.


2021 ◽  
pp. 108041
Author(s):  
C.U. Schuster ◽  
T. Johnson ◽  
G. Papp ◽  
R. Bilato ◽  
S. Sipilä ◽  
...  

2003 ◽  
Vol 62 (3-6) ◽  
pp. 289-295 ◽  
Author(s):  
V.N. Alexandrov ◽  
I.T. Dimov ◽  
A. Karaivanova ◽  
C.J.K. Tan

Sign in / Sign up

Export Citation Format

Share Document