detailed balance
Recently Published Documents


TOTAL DOCUMENTS

668
(FIVE YEARS 129)

H-INDEX

48
(FIVE YEARS 7)

Author(s):  
Andreas Dechant

Abstract We investigate the problem of minimizing the entropy production for a physical process that can be described in terms of a Markov jump dynamics. We show that, without any further constraints, a given time-evolution may be realized at arbitrarily small entropy production, yet at the expense of diverging activity. For a fixed activity, we find that the dynamics that minimizes the entropy production is given in terms of conservative forces. The value of the minimum entropy production is expressed in terms of the graph-distance based Wasserstein distance between the initial and final configuration. This yields a new kind of speed limit relating dissipation, the average number of transitions and the Wasserstein distance. It also allows us to formulate the optimal transport problem on a graph in term of a continuous-time interpolating dynamics, in complete analogy to the continuous space setting. We demonstrate our findings for simple state networks, a time-dependent pump and for spin flips in the Ising model.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Thomas Banks ◽  
Bingnan Zhang

We complete an old argument that causal diamonds in the crunching region of the Lorentzian continuation of a Coleman-Deluccia instanton for transitions out of de Sitter space have finite area, and provide quantum models consistent with the principle of detailed balance, which can mimic the instanton transition probabilities for the cases where this diamond is larger or smaller than the causal patch of de Sitter space. We review arguments that potentials which do not have a positive energy theorem when the lowest de Sitter minimum is shifted to zero, may not correspond to real models of quantum gravity.


2022 ◽  
Vol 1048 ◽  
pp. 172-181
Author(s):  
Sourav Roy ◽  
Md. Shohanur Rahman ◽  
Diponkar Kundu ◽  
Farhana Akter Piata ◽  
Md. Rafiqul Islam

In this work, an intermediate band solar cell (IBSC) model consisting of MAPbI3 quantum dots (QD) and MAPbCl3 barrier material is explored analytically with MATLAB. Titanium di-oxide (TiO2) is used as transport layer for electron and Spiro-OMeTAD (2,2',7,7'-tet-rakis (N,N'-di-p-methoxyphenylamine)–9,9' spirobifluorene) is used as transport layer for hole. Fluorine-doped tin oxide (FTO) and Silver (Ag) is used as top and bottom contact. The impact of QD size and dot spacing on the key parameters of MAPbI3 QD-IBSC is illustrated throughout this paper. In order to identify the number of IB in a single regime, Schrödinger equation is solved as a function of host energy gap using Kronig–Penney model. The detailed balance limit assumptions with unity fill factor are applied to extract highest efficiency from the system. For any case, face centered cubic (FCC) crystal structure is assumed. The (100) crystal orientation is considered as charge carriers from n–region to p–region transport in this orientation. Major performance indicators of the device such as photocurrent intensity Jsc, open circuit voltage Voc and power conversion efficiency η have been delineated. Highest efficiency of 63% is attained for dot size of 4 nm and dot spacing of 1.5 nm.


Author(s):  
Anna Jungbluth ◽  
Pascal Kaienburg ◽  
Moritz Riede

Abstract A correct determination of voltage losses is crucial for the development of organic solar cells with improved performance. This requires an in-depth understanding of the properties of interfacial charge transfer (CT) states, which not only set the upper limit for the open-circuit voltage of a system, but also govern radiative and non-radiative recombination processes. Over the last decade, different approaches have emerged to classify voltage losses in organic solar cells that rely on a generic detailed balance approach or additionally include CT state parameters that are specific to organic solar cells. In the latter case, a correct determination of CT state properties is paramount. In this work, we summarize the different frameworks used today to calculate voltage losses and provide an in-depth discussion of the currently most important models used to characterize CT state properties from absorption and emission data of organic thin films and solar cells. We also address practical concerns during the data recording, analysis, and fitting process. Departing from the classical two-state Marcus theory approach, we discuss the importance of quantized molecular vibrations and energetic hybridization effects in organic donor-acceptor systems with the goal to providing the reader with a detailed understanding of when each model is most appropriate.


Physics ◽  
2021 ◽  
Vol 3 (4) ◽  
pp. 1167-1174
Author(s):  
Viktor Dubrovich ◽  
Timur Zalialiutdinov

In the present paper, the process of inverse double-Compton (IDC) scattering is considered in the context of astrophysical applications. It is assumed that the two hard X-ray photons emitted from an astrophysical source are scattered on a free electron and converted into a single soft photon of optical range. Using the QED S-matrix formalism for the derivation of a cross-section of direct double-Compton (DDC) scattering and assuming detailed balance conditions, an analytical expression for the cross-section of the IDC process is presented. It is shown that at fixed energies of incident photons, the inverse cross-section has no infrared divergences, and its behavior is completely defined by the spectral characteristics of the photon source itself, in particular by the finite interaction time of radiation with an electron. Thus, even for the direct process, the problem of resolving infrared divergence actually refers to a real physical source of radiation in which photons are never actually plane waves. As a result, the physical frequency profile of the scattered radiation for DDC as well as for IDC processes is a function of both the intensity and line shape of the incident photon field.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
C. A. Brackley ◽  
A. Lips ◽  
A. Morozov ◽  
W. C. K. Poon ◽  
D. Marenduzzo

AbstractUnderstanding the interactions between viruses and surfaces or interfaces is important, as they provide the principles underpinning the cleaning and disinfection of contaminated surfaces. Yet, the physics of such interactions is currently poorly understood. For instance, there are longstanding experimental observations suggesting that the presence of air-water interfaces can generically inactivate and kill viruses, yet the mechanism underlying this phenomenon remains unknown. Here we use theory and simulations to show that electrostatics may provide one such mechanism, and that this is very general. Thus, we predict that the electrostatic free energy of an RNA virus should increase by several thousands of kBT as the virion breaches an air-water interface. We also show that the fate of a virus approaching a generic liquid-liquid interface depends strongly on the detailed balance between interfacial and electrostatic forces, which can be tuned, for instance, by choosing different media to contact a virus-laden respiratory droplet. Tunability arises because both the electrostatic and interfacial forces scale similarly with viral size. We propose that these results can be used to design effective strategies for surface disinfection.


2021 ◽  
Vol 32 (1) ◽  
Author(s):  
L. Mihaela Paun ◽  
Dirk Husmeier

AbstractWe propose to accelerate Hamiltonian and Lagrangian Monte Carlo algorithms by coupling them with Gaussian processes for emulation of the log unnormalised posterior distribution. We provide proofs of detailed balance with respect to the exact posterior distribution for these algorithms, and validate the correctness of the samplers’ implementation by Geweke consistency tests. We implement these algorithms in a delayed acceptance (DA) framework, and investigate whether the DA scheme can offer computational gains over the standard algorithms. A comparative evaluation study is carried out to assess the performance of the methods on a series of models described by differential equations, including a real-world application of a 1D fluid-dynamics model of the pulmonary blood circulation. The aim is to identify the algorithm which gives the best trade-off between accuracy and computational efficiency, to be used in nonlinear DE models, which are computationally onerous due to repeated numerical integrations in a Bayesian analysis. Results showed no advantage of the DA scheme over the standard algorithms with respect to several efficiency measures based on the effective sample size for most methods and DE models considered. These gradient-driven algorithms register a high acceptance rate, thus the number of expensive forward model evaluations is not significantly reduced by the first emulator-based stage of DA. Additionally, the Lagrangian Dynamical Monte Carlo and Riemann Manifold Hamiltonian Monte Carlo tended to register the highest efficiency (in terms of effective sample size normalised by the number of forward model evaluations), followed by the Hamiltonian Monte Carlo, and the No U-turn sampler tended to be the least efficient.


2021 ◽  
Vol 46 (1) ◽  
Author(s):  
Raphaël Chetrite ◽  
Paolo Muratore-Ginanneschi ◽  
Kay Schwieger

AbstractWe present an English translation of Erwin Schrödinger’s paper on “On the Reversal of the Laws of Nature‘’. In this paper, Schrödinger analyses the idea of time reversal of a diffusion process. Schrödinger’s paper acted as a prominent source of inspiration for the works of Bernstein on reciprocal processes and of Kolmogorov on time reversal properties of Markov processes and detailed balance. The ideas outlined by Schrödinger also inspired the development of probabilistic interpretations of quantum mechanics by Fényes, Nelson and others as well as the notion of “Euclidean Quantum Mechanics” as probabilistic analogue of quantization. In the second part of the paper, Schrödinger discusses the relation between time reversal and statistical laws of physics. We emphasize in our commentary the relevance of Schrödinger’s intuitions for contemporary developments in statistical nano-physics.


Author(s):  
Alexandre Coates ◽  
Brendon W Lovett ◽  
Erik Gauger

Abstract Environmental noise plays a key role in determining the efficiency of transport in quantum systems. However, disorder and localisation alter the impact of such noise on energy transport. To provide a deeper understanding of this relationship we perform a systematic study of the connection between eigenstate localisation and the optimal dephasing rate in 1D chains. The effects of energy gradients and disorder on chains of various lengths are evaluated and we demonstrate how optimal transport efficiency is determined by both size-independent, as well as size-dependent factors. By discussing how size-dependent influences emerge from finite size effects we establish when these effects are suppressed, and show that a simple power law captures the interplay between size-dependent and size-independent responses. Moving beyond phenomenological pure dephasing, we implement a finite temperature Bloch-Redfield model that captures detailed balance. We show that the relationship between localisation and optimal environmental coupling strength continues to apply at intermediate and high temperature but breaks down in the low temperature limit.


2021 ◽  
Vol 118 (47) ◽  
pp. e2109889118
Author(s):  
Christopher W. Lynn ◽  
Eli J. Cornblath ◽  
Lia Papadopoulos ◽  
Maxwell A. Bertolero ◽  
Danielle S. Bassett

Living systems break detailed balance at small scales, consuming energy and producing entropy in the environment to perform molecular and cellular functions. However, it remains unclear how broken detailed balance manifests at macroscopic scales and how such dynamics support higher-order biological functions. Here we present a framework to quantify broken detailed balance by measuring entropy production in macroscopic systems. We apply our method to the human brain, an organ whose immense metabolic consumption drives a diverse range of cognitive functions. Using whole-brain imaging data, we demonstrate that the brain nearly obeys detailed balance when at rest, but strongly breaks detailed balance when performing physically and cognitively demanding tasks. Using a dynamic Ising model, we show that these large-scale violations of detailed balance can emerge from fine-scale asymmetries in the interactions between elements, a known feature of neural systems. Together, these results suggest that violations of detailed balance are vital for cognition and provide a general tool for quantifying entropy production in macroscopic systems.


Sign in / Sign up

Export Citation Format

Share Document