scholarly journals Application of high frequency mechanical impact treatment to improve the fatigue strength of corroding welded joints

2021 ◽  
Vol 65 (11) ◽  
pp. 2157-2167
Author(s):  
J. Weinert ◽  
S. Gkatzogiannis ◽  
I. Engelhardt ◽  
P. Knoedel ◽  
T. Ummenhofer

AbstractThis study deals with the fatigue strength of high-frequency mechanical impact (HFMI)-treated unprotected structural details made of mild steel S355 considering the influence of corrosive environmental conditions. The investigations are carried out on butt welded specimens with sheet thickness t = 15 mm and on transverse non-load-carrying attachment specimens with sheet thickness t = 25 mm. Two different methods were applied for the simulation of marine corrosive environment in the laboratory. Specimens first were deposited in a salt spray chamber and then tested subsequently dry at laboratory-air conditions considering the influence of corrosion on the crack initiation. Alternatively, and to cover the effects of corrosion on the crack growth, artificial seawater was used for pre-corrosion, and after a defined timespan, fatigue tests were performed simultaneously with the specimen resting in the corrosive medium. The corrosion fatigue tests were performed in as-welded and HFMI-treated conditions at a stress ratio R = 0.1 under axial tensile and 4-point bending cyclic loading. The test results are evaluated to determine the characteristic fatigue strengths for fixed slopes m = 3 and m = 5 according to IIW recommendations for the as-welded and for the HFMI-treated condition respectively. The results of the experimental investigations based on the nominal stress approach show that the fatigue strength of both specimen types could be significantly increased by the application of HFMI treatment compared to the corresponding specimens in the as-welded condition even if exposed to the investigated corrosive conditions. The comparison with the design proposals of IIW shows that for HFMI-treated butt welds, no reduction of the FAT class due to corrosion is required and the recommended FAT class is still valid. The results for the HFMI-treated transverse attachments are slightly below the design curve recommended by IIW and a proposal to consider corrosion is derived for this case. Additional numerical investigations by applying the effective notch stress (ENS) approach are performed to determine notch stress curves. It was found that for the corroded specimens in the as-welded condition, the FAT class according to IIW could not be reached and adjustments of the existing rules are necessary to consider corrosion effects. However, it can be concluded that the effective notch fatigue resistance recommended by IIW is still applicable in the case of corroded HFMI-treated structural details.

Author(s):  
M H Kim ◽  
H J Kim ◽  
J H Han ◽  
J M Lee ◽  
Y D Kim ◽  
...  

The purpose of this study is to investigate the fatigue strength of butt-welded joints with special attention paid to employing different kinds of backing plates. The effect of the under-matched weld was also considered. Four different cases of backing scenarios for butt-welded specimens such as steel backing, ceramic backing, CMT (no backing by cold metal transfer) and UM (under-matched welded specimen) were investigated. A series of fatigue tests was performed to compare the fatigue strength of butt-welded joints with respect to different backing scenarios. Effective notch stress was used for the interpretation of fatigue strength of butt-welded specimens with backing plates based on finite element analyses for calculating fatigue notch factors. When results were presented from the effective notch stress, all backing scenarios considered in this study exhibited the fatigue strengths corresponding to the FAT 225 curve. From the experimental results of this study, it was determined that the fatigue strengths of butt-welded joints were found to be in the order of CMT, ceramic backing, UM, and steel backing. No significant decrease in fatigue strength, however, was observed when backing plates were steel backing and ceramic backing types.


2008 ◽  
Vol 24 (03) ◽  
pp. 139-146
Author(s):  
H. Remes ◽  
P. Varsta

This paper presents the results of fatigue tests, including tests of laser hybrid and arc welded butt joints, for two plate thicknesses, 6 and 12 mm. Pure laser welded joints were also tested. The S-N curves based on nominal stresses for the different welded joints are presented. The results were further analyzed using the notch stress approach, where the fatigue notch factors were determined from the measured geometries of the welded joints. Unexpected differences in the S-N curves based on the notch stresses were found between the laser hybrid and arc welded joints and between the laser hybrid and pure laser welded joints. The reasons for this difference were studied with the help of extensive measurements of weld notch geometries. Significant differences in the geometries were observed. Taking into account the notch geometry and the notch depth, the notch stress approach partially explains the differences between the fatigue endurance limits of the laser hybrid and arc welded joints. The applicability of the notch stress approach to the fatigue design of laser hybrid welded joints is also discussed.


2016 ◽  
Vol 106 ◽  
pp. 422-435 ◽  
Author(s):  
Halid Can Yıldırım ◽  
Martin Leitner ◽  
Gary B. Marquis ◽  
Michael Stoschka ◽  
Zuheir Barsoum

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1097
Author(s):  
Manuel Schuscha ◽  
Michael Horvath ◽  
Martin Leitner ◽  
Michael Stoschka

Shrinkage porosities and non-metallic inclusions are common manufacturing process based defects that are present within cast materials. Conventional fatigue design recommendations, such as the FKM guideline (“Forschungskuratorium Maschinenbau”), therefore propose general safety factors for the fatigue assessment of cast structures. In fact, these factors mostly lead to oversized components and do not facilitate a lightweight design process. In this work, the effect of shrinkage porosities on the fatigue strength of defect-afflicted large-scale specimens manufactured from the cast steel G21Mn5 is studied by means of a notch stress intensity factor-based (NSIF-based) generalized Kitagawa diagram. Additionally, the mean stress sensitivity of the material is taken into account and establishes a load stress ratio enhanced diagram. Thereby, the fatigue assessment approach is performed by utilizing the defects sizes taken either from the fracture surface of the tested specimens or from non-destructive X-ray investigations. Additionally, a numerical algorithm invoking cellular automata, which enables the generation of artificial defects, is presented. Conclusively, a comparison to the results of the experimental investigations reveals a sound agreement to the generated spatial pore geometries. To sum up, the generalized Kitagawa diagram, as well as a concept utilizing artificially generated defects, is capable of assessing the local fatigue limit of cast steel G21Mn5 components and features the mapping of imperfection grades to their corresponding fatigue strength limit.


Author(s):  
R. Schiller ◽  
D. Löschner ◽  
P. Diekhoff ◽  
I. Engelhardt ◽  
Th. Nitschke-Pagel ◽  
...  

AbstractIn the meantime, it’s well known that post-weld fatigue strength improvement techniques for welded structures like high-frequency mechanical impact (HFMI) treatment increase the fatigue live of welded joints. Although the current design recommendations for HFMI-treated welded joints give first design proposals for the HFMI-treated welds, in practice the application of HFMI treatment and the associated increase in fatigue resistance are still being discussed. There are, for example, reservations regarding the efficiency of HFMI-treated welded joints under variable amplitude loading (VAL). This paper analyses first results for the sequence effect of VAL of a p (1/3) spectrum on the service fatigue strength of HFMI-treated transverse stiffeners (TS) of mild steel (S355). Fatigue test results with random and high-low loading for the two states as-welded (AW) and HFMI-treated joints will be presented. The modified linear damage accumulation and the failure locations will be discussed. The experimental results show a clear change in the slope of the S-N curve from the as-welded (AW) state to the HFMI state and additionally in the HFMI state from constant amplitude loading (CAL) to variable amplitude loading (VAL). It was particularly noticeable in the experimental results of all tested HFMI series that the specimens failed exclusively in the base material 2–4mm before the HFMI-treated welds. The presented results of the investigations show that with application of the nominal stress concept, no sequence effect was recognizable.


2013 ◽  
Vol 2 (1) ◽  
pp. 88-101
Author(s):  
Thomas Ummenhofer ◽  
Philipp Weidner ◽  
Tim Zinke

Abstract Numerous studies at KIT prove that high frequency mechanical impact (HFMI) treatment is an efficient method for increasing the fatigue strength of welded steel structures. Within different research projects it was found that HFMI-methods can be used successfully for new and existing structures in order to extend the fatigue life. This paper gives an overview of the current status of existing steel bridges in Germany regarding aspects like bridge age distributions and traffic loads. Based on that overview welded joints susceptible to fatigue failure are identified. Using component-like small scale specimens, HFMI-methods were investigated within the objective of implementing an effective application for new and existing structures. Applying the fatigue test data observed, existing design proposals are evaluated and design recommendations for HFMI-treated joints are given. As a result of the research work, a transfer into practice has been realized and different applications are illustrated using the example of bridge constructions made of steel.


Sign in / Sign up

Export Citation Format

Share Document