Generalized Derivations Acting on Multilinear Polynomials in Prime Rings and Banach Algebras

2015 ◽  
Vol 4 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Basudeb Dhara ◽  
Nurcan Argaç
2018 ◽  
Vol 25 (04) ◽  
pp. 681-700
Author(s):  
Basudeb Dhara ◽  
Vincenzo De Filippis

Let R be a prime ring of characteristic different from 2, Q be its maximal right ring of quotients, and C be its extended centroid. Suppose that [Formula: see text] is a non-central multilinear polynomial over C, [Formula: see text], and F, G are two b-generalized derivations of R. In this paper we describe all possible forms of F and G in the case [Formula: see text] for all [Formula: see text] in Rn.


2019 ◽  
Vol 48 (4) ◽  
pp. 1770-1788
Author(s):  
Shailesh Kumar Tiwari ◽  
Sanjay Kumar Singh

2011 ◽  
Vol 18 (spec01) ◽  
pp. 955-964 ◽  
Author(s):  
Nurcan Argaç ◽  
Vincenzo De Filippis

Let K be a commutative ring with unity, R a non-commutative prime K-algebra with center Z(R), U the Utumi quotient ring of R, C=Z(U) the extended centroid of R, I a non-zero two-sided ideal of R, H and G non-zero generalized derivations of R. Suppose that f(x1,…,xn) is a non-central multilinear polynomial over K such that H(f(X))f(X)-f(X)G(f(X))=0 for all X=(x1,…,xn)∈ In. Then one of the following holds: (1) There exists a ∈ U such that H(x)=xa and G(x)=ax for all x ∈ R. (2) f(x1,…,xn)2 is central valued on R and there exist a, b ∈ U such that H(x)=ax+xb and G(x)=bx+xa for all x ∈ R. (3) char (R)=2 and R satisfies s4, the standard identity of degree 4.


2014 ◽  
Vol 34 (1) ◽  
pp. 125 ◽  
Author(s):  
Asma Ali ◽  
Basudeb Dhara ◽  
Shahoor Khan

2012 ◽  
Vol 19 (spec01) ◽  
pp. 971-986 ◽  
Author(s):  
Luisa Carini ◽  
Vincenzo De Filippis

Let R be a prime ring, U the Utumi quotient ring of R, C = Z(U) the extended centroid of R, L a non-central Lie ideal of R, and H, G nonzero generalized derivations of R. Suppose that there exists an integer n ≥ 1 such that H(un)un + unG(un) ∈ C for all u ∈ L, then either there exists a ∈ U such that H(x) = xa and G(x) = -ax, or R satisfies the standard identity s4 and one of the following holds: (i) char (R) = 2; (ii) n is even and there exist a′ ∈ U, α ∈ C and derivations d, δ of R such that H(x) = a′ x + d(x) and G(x) = (α-a′)x + δ(x); (iii) n is even and there exist a′ ∈ U and a derivation δ of R such that H(x)=xa′ and G(x) = -a′ x + δ(x); (iv) n is odd and there exist a′, b′ ∈ U and α, β ∈ C such that H(x) = a′ x + x(β-b′) and G(x) = b′ x+x(α-a′); (v) n is odd and there exist α, β ∈ C and a derivation d of R such that H(x) = α x+d(x) and G(x) = β x + d(x); (vi) n is odd and there exist a′ ∈ U and α ∈ C such that H(x) = xa′ and G(x) = (α - a′)x. As an application of this purely algebraic result, we obtain some range inclusion results of continuous or spectrally bounded generalized derivations H and G on Banach algebras R satisfying the condition H(xn)xn + xnG(xn) ∈ rad (R) for all x ∈ R, where rad (R) is the Jacobson radical of R.


Sign in / Sign up

Export Citation Format

Share Document