multilinear polynomial
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 7)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


Filomat ◽  
2021 ◽  
Vol 35 (6) ◽  
pp. 1785-1801
Author(s):  
Basudeb Dhara

Let R be a noncommutative prime ring of char (R)? 2 with Utumi quotient ring U and extended centroid C and I a nonzero two sided ideal of R. Suppose that F(? 0), G and H are three generalized derivations of R and f (x1,...,xn) is a multilinear polynomial over C, which is not central valued on R. If F(G(f(r))f(r)- f(r)H(f(r))) = 0 for all r = (r1,..., rn) ? In, then we obtain information about the structure of R and describe the all possible forms of the maps F, G and H. This result generalizes many known results recently proved by several authors ([1], [4], [5], [8], [9], [13], [15]).


2020 ◽  
Vol 177 (1) ◽  
pp. 69-93
Author(s):  
Purnata Ghosal ◽  
B.V. Raghavendra Rao

We consider the problem of obtaining parameterized lower bounds for the size of arithmetic circuits computing polynomials with the degree of the polynomial as the parameter. We consider the following special classes of multilinear algebraic branching programs: 1) Read Once Oblivious Branching Programs (ROABPs), 2) Strict interval branching programs, 3) Sum of read once formulas with restricted ordering. We obtain parameterized lower bounds (i.e., nΩ(t(k)) lower bound for some function t of k) on the size of the above models computing a multilinear polynomial that can be computed by a depth four circuit of size g(k)nO(1) for some computable function g. Further, we obtain a parameterized separation between ROABPs and read-2 ABPs. This is obtained by constructing a degree k polynomial that can be computed by a read-2 ABP of small size such that the rank of the partial derivative matrix under any partition of the variables is large.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ashraf ◽  
Sajad Ahmad Pary ◽  
Mohd Arif Raza

AbstractLet {\mathscr{R}} be a prime ring, {\mathscr{Q}_{r}} the right Martindale quotient ring of {\mathscr{R}} and {\mathscr{C}} the extended centroid of {\mathscr{R}}. In this paper, we discuss the relationship between the structure of prime rings and the behavior of skew derivations on multilinear polynomials. More precisely, we investigate the m-potent commutators of skew derivations involving multilinear polynomials, i.e.,\big{(}[\delta(f(x_{1},\ldots,x_{n})),f(x_{1},\ldots,x_{n})]\big{)}^{m}=[% \delta(f(x_{1},\ldots,x_{n})),f(x_{1},\ldots,x_{n})],where {1<m\in\mathbb{Z}^{+}}, {f(x_{1},x_{2},\ldots,x_{n})} is a non-central multilinear polynomial over {\mathscr{C}} and δ is a skew derivation of {\mathscr{R}}.


Author(s):  
Sergey Malev

Let [Formula: see text] be a multilinear polynomial in several noncommuting variables with coefficients in an arbitrary field [Formula: see text]. Kaplansky conjectured that for any [Formula: see text], the image of [Formula: see text] evaluated on the set [Formula: see text] of [Formula: see text] by [Formula: see text] matrices is a vector space. In this paper, we settle the analogous conjecture for a quaternion algebra.


Filomat ◽  
2019 ◽  
Vol 33 (19) ◽  
pp. 6251-6266
Author(s):  
S.K. Tiwari ◽  
B. Prajapati

Let R be a prime ring of characteristic different from 2 and F a b-generalized derivation on R. Let U be Utumi quotient ring of R with extended centroid C and f (x1,..., xn) be a multilinear polynomial over C which is not central valued on R. Suppose that d is a non zero derivation on R such that d([F(f(r)), f(r)]) ? C for all r = (r1,..., rn) ? Rn, then one of the following holds: (1) there exist a ? U, ? ? C such that F(x) = ax + ?x + xa for all x ? R and f (x1,..., xn)2 is central valued on R, (2) there exists ? ? C such that F(x) = ?x for all x ? R.


2018 ◽  
Vol 25 (04) ◽  
pp. 681-700
Author(s):  
Basudeb Dhara ◽  
Vincenzo De Filippis

Let R be a prime ring of characteristic different from 2, Q be its maximal right ring of quotients, and C be its extended centroid. Suppose that [Formula: see text] is a non-central multilinear polynomial over C, [Formula: see text], and F, G are two b-generalized derivations of R. In this paper we describe all possible forms of F and G in the case [Formula: see text] for all [Formula: see text] in Rn.


2017 ◽  
Vol 60 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Münevver Pınar Eroglu ◽  
Nurcan Argaç

AbstractLet R be a prime ring with extended centroid C, Q maximal right ring of quotients of R, RC central closure of R such that dim C(RC) > , ƒ (X1, . . . , Xn) a multilinear polynomial over C that is not central-valued on R, and f (R) the set of all evaluations of the multilinear polynomial f (X1 , . . . , Xn) in R. Suppose that G is a nonzero generalized derivation of R such that G2(u)u ∈ C for all u ∈ ƒ(R).


Sign in / Sign up

Export Citation Format

Share Document