scholarly journals On Properties of Expansive Group Actions

2019 ◽  
Vol 44 (4) ◽  
pp. 923-934 ◽  
Author(s):  
Ali Barzanouni ◽  
Mahin Sadat Divandar ◽  
Ekta Shah
Author(s):  
Ville Salo ◽  
Ilkka Törmä

We consider expansive group actions on a compact metric space containing a special fixed point denoted by [Formula: see text], and endomorphisms of such systems whose forward trajectories are attracted toward [Formula: see text]. Such endomorphisms are called asymptotically nilpotent, and we study the conditions in which they are nilpotent, that is, map the entire space to [Formula: see text] in a finite number of iterations. We show that for a large class of discrete groups, this property of nil-rigidity holds for all expansive actions that satisfy a natural specification-like property and have dense homoclinic points. Our main result in particular shows that the class includes all residually finite solvable groups and all groups of polynomial growth. For expansive actions of the group [Formula: see text], we show that a very weak gluing property suffices for nil-rigidity. For [Formula: see text]-subshifts of finite type, we show that the block-gluing property suffices. The study of nil-rigidity is motivated by two aspects of the theory of cellular automata and symbolic dynamics: It can be seen as a finiteness property for groups, which is representative of the theory of cellular automata on groups. Nilpotency also plays a prominent role in the theory of cellular automata as dynamical systems. As a technical tool of possible independent interest, the proof involves the construction of tiered dynamical systems where several groups act on nested subsets of the original space.


2014 ◽  
Vol 218 (5) ◽  
pp. 777-783
Author(s):  
Darryl McCullough
Keyword(s):  

Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.


2019 ◽  
Vol 2019 (753) ◽  
pp. 23-56 ◽  
Author(s):  
Christian Miebach ◽  
Karl Oeljeklaus

AbstractWe systematically study Schottky group actions on homogeneous rational manifolds and find two new families besides those given by Nori’s well-known construction. This yields new examples of non-Kähler compact complex manifolds having free fundamental groups. We then investigate their analytic and geometric invariants such as the Kodaira and algebraic dimension, the Picard group and the deformation theory, thus extending results due to Lárusson and to Seade and Verjovsky. As a byproduct, we see that the Schottky construction allows to recover examples of equivariant compactifications of {{\rm{SL}}(2,\mathbb{C})/\Gamma} for Γ a discrete free loxodromic subgroup of {{\rm{SL}}(2,\mathbb{C})}, previously obtained by A. Guillot.


2011 ◽  
Vol 363 (06) ◽  
pp. 2865-2865 ◽  
Author(s):  
Karsten Grove ◽  
Wolfgang Ziller

2008 ◽  
Vol 281 (4) ◽  
pp. 575-581
Author(s):  
Riccardo Re
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document