scholarly journals Nilpotent endomorphisms of expansive group actions

Author(s):  
Ville Salo ◽  
Ilkka Törmä

We consider expansive group actions on a compact metric space containing a special fixed point denoted by [Formula: see text], and endomorphisms of such systems whose forward trajectories are attracted toward [Formula: see text]. Such endomorphisms are called asymptotically nilpotent, and we study the conditions in which they are nilpotent, that is, map the entire space to [Formula: see text] in a finite number of iterations. We show that for a large class of discrete groups, this property of nil-rigidity holds for all expansive actions that satisfy a natural specification-like property and have dense homoclinic points. Our main result in particular shows that the class includes all residually finite solvable groups and all groups of polynomial growth. For expansive actions of the group [Formula: see text], we show that a very weak gluing property suffices for nil-rigidity. For [Formula: see text]-subshifts of finite type, we show that the block-gluing property suffices. The study of nil-rigidity is motivated by two aspects of the theory of cellular automata and symbolic dynamics: It can be seen as a finiteness property for groups, which is representative of the theory of cellular automata on groups. Nilpotency also plays a prominent role in the theory of cellular automata as dynamical systems. As a technical tool of possible independent interest, the proof involves the construction of tiered dynamical systems where several groups act on nested subsets of the original space.

1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.


2005 ◽  
Vol 08 (02n03) ◽  
pp. 169-192 ◽  
Author(s):  
NILS A. BAAS ◽  
TORBJØRN HELVIK

We introduce a class of dynamical systems called Higher Order Cellular Automata (HOCA). These are based on ordinary CA, but have a hierarchical, or multi-level, structure and/or dynamics. We present a detailed formalism for HOCA and illustrate the concepts through four examples. Throughout the article we emphasize the principles and ideas behind the construction of HOCA, such that these easily can be applied to other types of dynamical systems. The article also presents new concepts and ideas for describing and studying hierarchial dynamics in general.


1998 ◽  
Vol 18 (2) ◽  
pp. 471-486 ◽  
Author(s):  
T. B. WARD

We show that for almost every ergodic $S$-integer dynamical system the radius of convergence of the dynamical zeta function is no larger than $\exp(-\frac{1}{2}h_{\rm top})<1$. In the arithmetic case almost every zeta function is irrational.We conjecture that for almost every ergodic $S$-integer dynamical system the radius of convergence of the zeta function is exactly $\exp(-h_{\rm top})<1$ and the zeta function is irrational.In an important geometric case (the $S$-integer systems corresponding to isometric extensions of the full $p$-shift or, more generally, linear algebraic cellular automata on the full $p$-shift) we show that the conjecture holds with the possible exception of at most two primes $p$.Finally, we explicitly describe the structure of $S$-integer dynamical systems as isometric extensions of (quasi-)hyperbolic dynamical systems.


2012 ◽  
Vol 212 (2) ◽  
pp. 119-139 ◽  
Author(s):  
Isabelle Gallagher ◽  
Yannick Sire

2007 ◽  
Vol 18 (05) ◽  
pp. 833-848 ◽  
Author(s):  
JUAN CARLOS SECK TUOH MORA ◽  
MANUEL GONZALEZ HERNANDEZ ◽  
NORBERTO HERNANDEZ ROMERO ◽  
AARON RODRIGUEZ TREJO ◽  
SERGIO V. CHAPA VERGARA

This paper exposes a procedure for modeling and solving linear systems using continuous-valued cellular automata. The original part of this work consists on showing how the cells in the automaton may contain both real values and operators for carrying out numerical calculations and solve a desired problem. In this sense the automaton acts as a program, where data and operators are mixed in the evolution space for obtaining the correct calculations. As an example, Euler's integration method is implemented in the configuration space in order to achieve an approximated solution for a dynamical system. Three examples showing linear behaviors are presented.


2017 ◽  
Vol 27 (04) ◽  
pp. 1750062 ◽  
Author(s):  
Cheng Xu ◽  
Chengqing Li ◽  
Jinhu Lü ◽  
Shi Shu

This paper discusses the letter entitled “Network analysis of the state space of discrete dynamical systems” by A. Shreim et al. [Phys. Rev. Lett. 98, 198701 (2007)]. We found that some theoretical analyses are wrong and the proposed indicators based on two parameters of the state-mapping network cannot discriminate the dynamical complexity of the discrete dynamical systems composed of a 1D cellular automata.


Sign in / Sign up

Export Citation Format

Share Document