affine spaces
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 30)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
pp. 1-42
Author(s):  
JÉRÉMY BLANC ◽  
IMMANUEL VAN SANTEN

Abstract We study the possible dynamical degrees of automorphisms of the affine space $\mathbb {A}^n$ . In dimension $n=3$ , we determine all dynamical degrees arising from the composition of an affine automorphism with a triangular one. This generalizes the easier case of shift-like automorphisms which can be studied in any dimension. We also prove that each weak Perron number is the dynamical degree of an affine-triangular automorphism of the affine space $\mathbb {A}^n$ for some n, and we give the best possible n for quadratic integers, which is either $3$ or $4$ .


Author(s):  
Dayan Liu ◽  
Fumei Liu ◽  
Xiaosong Sun

The investigation of co-tame automorphisms of the affine space [Formula: see text] is helpful to understand the structure of its automorphisms group. In this paper, we show the co-tameness of several classes of automorphisms, including some 3-parabolic automorphisms, power-linear automorphisms, homogeneous automorphisms in small dimension or small transcendence degree. We also classify all additive-nilpotent automorphisms in dimension four and show that they are co-tame.


Author(s):  
Oliver Lorscheid ◽  
Thorsten Weist

AbstractExtending the main result of Lorscheid and Weist (2015), in the first part of this paper we show that every quiver Grassmannian of an indecomposable representation of a quiver of type $\tilde D_{n}$ D ~ n has a decomposition into affine spaces. In the case of real root representations of small defect, the non-empty cells are in one-to-one correspondence to certain, so called non-contradictory, subsets of the vertex set of a fixed tree-shaped coefficient quiver. In the second part, we use this characterization to determine the generating functions of the Euler characteristics of the quiver Grassmannians (resp. F-polynomials). Along these lines, we obtain explicit formulae for all cluster variables of cluster algebras coming from quivers of type $\tilde D_{n}$ D ~ n .


Author(s):  
Cristina Bertone ◽  
Francesca Cioffi

AbstractGiven a finite order ideal $${\mathcal {O}}$$ O in the polynomial ring $$K[x_1,\ldots , x_n]$$ K [ x 1 , … , x n ] over a field K, let $$\partial {\mathcal {O}}$$ ∂ O be the border of $${\mathcal {O}}$$ O and $${\mathcal {P}}_{\mathcal {O}}$$ P O the Pommaret basis of the ideal generated by the terms outside $${\mathcal {O}}$$ O . In the framework of reduction structures introduced by Ceria, Mora, Roggero in 2019, we investigate relations among $$\partial {\mathcal {O}}$$ ∂ O -marked sets (resp. bases) and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked sets (resp. bases). We prove that a $$\partial {\mathcal {O}}$$ ∂ O -marked set B is a marked basis if and only if the $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked set P contained in B is a marked basis and generates the same ideal as B. Using a functorial description of these marked bases, as a byproduct we obtain that the affine schemes respectively parameterizing $$\partial {\mathcal {O}}$$ ∂ O -marked bases and $${\mathcal {P}}_{\mathcal {O}}$$ P O -marked bases are isomorphic. We are able to describe this isomorphism as a projection that can be explicitly constructed without the use of Gröbner elimination techniques. In particular, we obtain a straightforward embedding of border schemes in affine spaces of lower dimension. Furthermore, we observe that Pommaret marked schemes give an open covering of Hilbert schemes parameterizing 0-dimensional schemes without any group actions. Several examples are given throughout the paper.


2021 ◽  
pp. 2150019
Author(s):  
Christian Urech ◽  
Susanna Zimmermann

We show that if a group automorphism of a Cremona group of arbitrary rank is also a homeomorphism with respect to either the Zariski or the Euclidean topology, then it is inner up to a field automorphism of the base-field. Moreover, we show that a similar result holds if we consider groups of polynomial automorphisms of affine spaces instead of Cremona groups.


Author(s):  
Jeffrey T. Denniston ◽  
Sergey A. Solovyov
Keyword(s):  

Author(s):  
Damianos Iosifidis

AbstractWe develop a novel model for cosmological hyperfluids, that is fluids with intrinsic hypermomentum that induce spacetime torsion and non-metricity. Imposing the cosmological principle to metric-affine spaces, we present the most general covariant form of the hypermomentum tensor in an FLRW Universe along with its conservation laws and therefore construct a novel hyperfluid model for cosmological purposes. Extending the previous model of the unconstrained hyperfluid in a cosmological setting we establish the conservation laws for energy–momentum and hypermomentum and therefore provide the complete cosmological setup to study non-Riemannian effects in Cosmology. With the help of this we find the forms of torsion and non-metricity that were earlier reported in the literature and also obtain the most general form of the Friedmann equations with torsion and non-metricity. We also discuss some applications of our model, make contact with the known results in the literature and point to future directions.


Sign in / Sign up

Export Citation Format

Share Document