scholarly journals On Monomial Golod Ideals

Author(s):  
Hailong Dao ◽  
Alessandro De Stefani

Abstract We study ideal-theoretic conditions for a monomial ideal to be Golod. For ideals in a polynomial ring in three variables, our criteria give a complete characterization. Over such rings, we show that the product of two monomial ideals is Golod.

2011 ◽  
Vol 48 (2) ◽  
pp. 220-226
Author(s):  
Azeem Haider ◽  
Sardar Khan

Let S = K[x1,…,xn] be a polynomial ring in n variables over a field K. Stanley’s conjecture holds for the modules I and S/I, when I ⊂ S is a critical monomial ideal. We calculate the Stanley depth of S/I when I is a canonical critical monomial ideal. For non-critical monomial ideals we show the existence of a Stanley ideal with the same depth and Hilbert function.


2017 ◽  
Vol 59 (3) ◽  
pp. 705-715
Author(s):  
S. A. SEYED FAKHARI

AbstractLet $\mathbb{K}$ be a field and S = ${\mathbb{K}}$[x1, . . ., xn] be the polynomial ring in n variables over the field $\mathbb{K}$. For every monomial ideal I ⊂ S, we provide a recursive formula to determine a lower bound for the Stanley depth of S/I. We use this formula to prove the inequality sdepth(S/I) ≥ size(I) for a particular class of monomial ideals.


2019 ◽  
Vol 19 (10) ◽  
pp. 2050201
Author(s):  
Ibrahim Al-Ayyoub

Let [Formula: see text] be a monomial ideal in a polynomial ring with two indeterminates over a field. Assume [Formula: see text] is contained in the integral closure of some ideal that is generated by two elements from the generating set of [Formula: see text]. We produce sharp upper bounds for each of the reduction number and the Ratliff–Rush reduction number of the ideal [Formula: see text]. Under certain hypotheses, we give the exact values of these reduction numbers, and we provide an explicit method for obtaining these sharp upper bounds.


2010 ◽  
Vol 149 (2) ◽  
pp. 229-246 ◽  
Author(s):  
LÊ TUÂN HOA ◽  
TRÂN NAM TRUNG

AbstractLet I, I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp be monomial ideals of a polynomial ring R = K[X1,. . ., Xr] and Ln = I+∩jIn1j + ⋅ ⋅ ⋅ + ∩jIpjn. It is shown that the ai-invariant ai(R/Ln) is asymptotically a quasi-linear function of n for all n ≫ 0, and the limit limn→∞ad(R/Ln)/n exists, where d = dim(R/L1). A similar result holds if I11,. . ., I1q1,. . ., Ip1,. . ., Ipqp are replaced by their integral closures. Moreover all limits $\lim_{n\to\infty} a_i(R/(\cap_j \overline{I_{1j}^n} + \cdots + \cap_j \overline{I_{pj}^n}))/n $ also exist.As a consequence, it is shown that there are integers p > 0 and 0 ≤ e ≤ d = dim R/I such that reg(In) = pn + e for all n ≫ 0 and pn ≤ reg(In) ≤ pn + d for all n > 0 and that the asymptotic behavior of the Castelnuovo–Mumford regularity of ordinary symbolic powers of a square-free monomial ideal is very close to a linear function.


2016 ◽  
Vol 16 (07) ◽  
pp. 1750122
Author(s):  
Lizhong Chu ◽  
V. H. Jorge Pérez

Let [Formula: see text] be a polynomial ring over a field [Formula: see text] and [Formula: see text] a monomial ideal. We give some inequalities on Stanley regularity of monomial ideals. As consequences, we prove that [Formula: see text] and [Formula: see text] hold in the following cases: (1) [Formula: see text] is a complete intersection; (2) [Formula: see text] is an ideal of mixed products.


2017 ◽  
Vol 120 (1) ◽  
pp. 59 ◽  
Author(s):  
N. Altafi ◽  
N. Nemati ◽  
S. A. Seyed Fakhari ◽  
S. Yassemi

Let $S = \mathbb{K}[x_1, \dots, x_n]$ be the polynomial ring over a field $\mathbb{K}$. In this paper we present a criterion for componentwise linearity of powers of monomial ideals. In particular, we prove that if a square-free monomial ideal $I$ contains no variable and some power of $I$ is componentwise linear, then $I$ satisfies the gcd condition. For a square-free monomial ideal $I$ which contains no variable, we show that $S/I$ is a Golod ring provided that for some integer $s\geq 1$, the ideal $I^s$ has linear quotients with respect to a monomial order.


2013 ◽  
Vol 87 (3) ◽  
pp. 514-526 ◽  
Author(s):  
KEIVAN BORNA ◽  
RAHELEH JAFARI

AbstractLet $S$ be a polynomial ring over a field $K$ and let $I$ be a monomial ideal of $S$. We say that $I$ is MHC (that is, $I$ satisfies the maximal height condition for the associated primes of $I$) if there exists a prime ideal $\mathfrak{p}\in {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I$ for which $\mathrm{ht} (\mathfrak{p})$ equals the number of indeterminates that appear in the minimal set of monomials generating $I$. Let $I= { \mathop{\bigcap }\nolimits}_{i= 1}^{k} {Q}_{i} $ be the irreducible decomposition of $I$ and let $m(I)= \max \{ \vert Q_{i}\vert - \mathrm{ht} ({Q}_{i} ): 1\leq i\leq k\} $, where $\vert {Q}_{i} \vert $ denotes the total degree of ${Q}_{i} $. Then it can be seen that when $I$ is primary, $\mathrm{reg} (S/ I)= m(I)$. In this paper we improve this result and show that whenever $I$ is MHC, then $\mathrm{reg} (S/ I)= m(I)$ provided $\vert {\mathrm{Ass} }_{S} \hspace{0.167em} S/ I\vert \leq 2$. We also prove that $m({I}^{n} )\leq n\max \{ \vert Q_{i}\vert : 1\leq i\leq ~k\} - \mathrm{ht} (I)$, for all $n\geq 1$. In addition we show that if $I$ is MHC and $w$ is an indeterminate which is not in the monomials generating $I$, then $\mathrm{reg} (S/ \mathop{(I+ {w}^{d} S)}\nolimits ^{n} )\leq \mathrm{reg} (S/ I)+ nd- 1$ for all $n\geq 1$ and $d$ large enough. Finally, we implement an algorithm for the computation of $m(I)$.


Author(s):  
Katie Ansaldi ◽  
Kuei-Nuan Lin ◽  
Yi-Huang Shen

Given a monomial ideal in a polynomial ring over a field, we define the generalized Newton complementary dual of the given ideal. We show good properties of such duals including linear quotients and isomorphism between the special fiber rings. We construct the cellular free resolutions of duals of strongly stable ideals generated in the same degree. When the base ideal is generated in degree two, we provide an explicit description of cellular free resolution of the dual of a compatible generalized stable ideal.


2006 ◽  
Vol 99 (1) ◽  
pp. 76 ◽  
Author(s):  
Satoshi Murai ◽  
Takayuki Hibi

Let $A = K[x_1,\ldots, x_n]$ denote the polynomial ring in $n$ variables over a field $K$ of characteristic $0$ with each $\deg x_i = 1$. Given arbitrary integers $i$ and $j$ with $2 \leq i \leq n$ and $3 \leq j \leq n$, we will construct a monomial ideal $I \subset A$ such that (i) $\beta_k(I) < \beta_k(\mathrm{Gin}(I))$ for all $k < i$, (ii) $\beta_i(I)= \beta_i(\mathrm{Gin}(I))$, (iii) $\beta_\ell((\mathrm{Gin}(I)) < \beta_\ell((\mathrm{Lex}(I))$ for all $\ell < j$ and (iv) $\beta_j(\mathrm{Gin}(I)) = \beta_j(\mathrm{Lex}(I))$, where $\mathrm{Gin}(I)$ is the generic initial ideal of $I$ with respect to the reverse lexicographic order induced by $x_1 > \cdots > x_n$ and where $\mathrm{Lex}(I)$ is the lexsegment ideal with the same Hilbert function as $I$.


2015 ◽  
Vol 58 (2) ◽  
pp. 393-401
Author(s):  
Zhongming Tang

AbstractLet S = K[x1 , . . . , xn] be the polynomial ring in n-variables over a ûeld K and I a monomial ideal of S. According to one standard primary decomposition of I, we get a Stanley decomposition of the monomial factor algebra S/I. Using this Stanley decomposition, one can estimate the Stanley depth of S/I. It is proved that sdepthS(S/I) ≤ sizeS(I). When I is squarefree and bigsizeS(I) ≤ 2, the Stanley conjecture holds for S/I, i.e., sdepthS(S/I) ≥ depthS(S/I).


Sign in / Sign up

Export Citation Format

Share Document