A Method for SDVV Detection and Classification Using Redundant Discrete Wavelet Transform

Author(s):  
Caio Marco dos Santos Junqueira ◽  
Núbia Silva Dantas Brito ◽  
Benemar Alencar de Souza
2016 ◽  
Vol 14 (4) ◽  
pp. 1662-1668 ◽  
Author(s):  
Ernano Arrais Junior ◽  
Ricardo Alexandro de Medeiros Valentim ◽  
Glaucio Bezerra Brandao

Author(s):  
Jianhua Liu ◽  
Peng Geng ◽  
Hongtao Ma

Purpose This study aims to obtain the more precise decision map to fuse the source images by Coefficient significance method. In the area of multifocus image fusion, the better decision map is very important the fusion results. In the processing of distinguishing the well-focus part with blur part in an image, the edge between the parts is more difficult to be processed. Coefficient significance is very effective in generating the better decision map to fuse the multifocus images. Design/methodology/approach The energy of Laplacian is used in the approximation coefficients of redundant discrete wavelet transform. On the other side, the coefficient significance based on statistic property of covariance is proposed to merge the detail coefficient. Findings Due to the shift-variance of the redundant discrete wavelet and the effectiveness of fusion rule, the presented fusion method is superior to the region energy in harmonic cosine wavelet domain, pixel significance with the cross bilateral filter and multiscale geometry analysis method of Ripplet transform. Originality/value In redundant discrete wavelet domain, the coefficient significance based on statistic property of covariance is proposed to merge the detail coefficient of source images.


2015 ◽  
Vol 16 (2) ◽  
pp. 119 ◽  
Author(s):  
Gabriela De Oliveira Nascimento Brassarote ◽  
Eniuce Menezes de Souza ◽  
João Francisco Galera Monico

Due to the numerous application possibilities, the theory of wavelets has been applied in several areas of research. The Discrete Wavelet Transform is the most known version. However, the downsampling required for its calculation makes it sensitive to the origin, what is not ideal for some applications,mainly in time series. On the other hand, the Non-Decimated Discrete Wavelet Transform (or Maximum Overlap Discrete Wavelet Transform, Stationary Wavelet Transform, Shift-invariant Discrete Wavelet Transform, Redundant Discrete Wavelet Transform) is shift invariant, because it considers all the elements of the sample, by eliminating the downsampling and, consequently, represents a time series with the same number of coefficients at each scale. In the present paper, the objective is to present the theorical aspects of the a multiscale/multiresolution analysis of non-stationary time series from non-decimated wavelets in terms of its implementation using the same pyramidal algorithm of the decimated wavelet transform. An application with real time series of the effect of the ionospheric scintillation on artificial satellite signals is investigated. With this analysis some information and hidden patterns which can not be detected in the time domain, may therefore be explained in the space-frequency domain.


Sign in / Sign up

Export Citation Format

Share Document