scholarly journals An improved weighted optimization approach for large-scale global optimization

Author(s):  
Minyang Chen ◽  
Wei Du ◽  
Wenjiang Song ◽  
Chen Liang ◽  
Yang Tang

AbstractIt is a great challenge for ordinary evolutionary algorithms (EAs) to tackle large-scale global optimization (LSGO) problems which involve over hundreds or thousands of decision variables. In this paper, we propose an improved weighted optimization approach (LSWOA) for helping solve LSGO problems. Thanks to the dimensionality reduction of weighted optimization, LSWOA can optimize transformed problems quickly and share the optimal weights with the population, thereby accelerating the overall convergence. First, we concentrate on the theoretical investigation of weighted optimization. A series of theoretical analyses are provided to illustrate the search behavior of weighted optimization, and the equivalent form of the transformed problem is presented to show the relationship between the original problem and the transformed one. Then the factors that affect problem transformation and how they take affect are figured out. Finally, based on our theoretical investigation, we modify the way of utilizing weighted optimization in LSGO. A weight-sharing strategy and a candidate solution inheriting strategy are designed, along with a better allocation of computational resources. These modifications help take full advantage of weighted optimization and save computational resources. The extensive experimental results on CEC’2010 and CEC’2013 verify the effectiveness and scalability of the proposed LSWOA.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
H. D. Yue ◽  
Y. Sun

Cooperative coevolution (CC) is an effective framework for solving large-scale global optimization (LSGO) problems. However, CC with static decomposition method is ineffective for fully nonseparable problems, and CC with dynamic decomposition method to decompose problems is computationally costly. Therefore, a two-stage decomposition (TSD) method is proposed in this paper to decompose LSGO problems using as few computational resources as possible. In the first stage, to decompose problems using low computational resources, a hybrid-pool differential grouping (HPDG) method is proposed, which contains a hybrid-pool-based detection structure (HPDS) and a unit vector-based perturbation (UVP) strategy. In the second stage, to decompose the fully nonseparable problems, a known information-based dynamic decomposition (KIDD) method is proposed. Analytical methods are used to demonstrate that HPDG has lower decomposition complexity compared to state-of-the-art static decomposition methods. Experiments show that CC with TSD is a competitive algorithm for solving LSGO problems.


1997 ◽  
Vol 12 (1) ◽  
pp. 437-443 ◽  
Author(s):  
Chih-Wen Liu ◽  
Wu-Shun Jwo ◽  
Chun-Chang Liu ◽  
Ying-Tung Hsiao

2011 ◽  
Vol 6 (7) ◽  
Author(s):  
Minghui Wu ◽  
Xianghui Xiong ◽  
Jing Ying ◽  
Canghong Jin ◽  
Chunyan Yu

Author(s):  
Kyle Robert Harrison ◽  
Azam Asilian Bidgoli ◽  
Shahryar Rahnamayan ◽  
Kalyanmoy Deb

2021 ◽  
Author(s):  
Parsoa Khorsand ◽  
Fereydoun Hormozdiari

Abstract Large scale catalogs of common genetic variants (including indels and structural variants) are being created using data from second and third generation whole-genome sequencing technologies. However, the genotyping of these variants in newly sequenced samples is a nontrivial task that requires extensive computational resources. Furthermore, current approaches are mostly limited to only specific types of variants and are generally prone to various errors and ambiguities when genotyping complex events. We are proposing an ultra-efficient approach for genotyping any type of structural variation that is not limited by the shortcomings and complexities of current mapping-based approaches. Our method Nebula utilizes the changes in the count of k-mers to predict the genotype of structural variants. We have shown that not only Nebula is an order of magnitude faster than mapping based approaches for genotyping structural variants, but also has comparable accuracy to state-of-the-art approaches. Furthermore, Nebula is a generic framework not limited to any specific type of event. Nebula is publicly available at https://github.com/Parsoa/Nebula.


Author(s):  
Lu Chen ◽  
Handing Wang ◽  
Wenping Ma

AbstractReal-world optimization applications in complex systems always contain multiple factors to be optimized, which can be formulated as multi-objective optimization problems. These problems have been solved by many evolutionary algorithms like MOEA/D, NSGA-III, and KnEA. However, when the numbers of decision variables and objectives increase, the computation costs of those mentioned algorithms will be unaffordable. To reduce such high computation cost on large-scale many-objective optimization problems, we proposed a two-stage framework. The first stage of the proposed algorithm combines with a multi-tasking optimization strategy and a bi-directional search strategy, where the original problem is reformulated as a multi-tasking optimization problem in the decision space to enhance the convergence. To improve the diversity, in the second stage, the proposed algorithm applies multi-tasking optimization to a number of sub-problems based on reference points in the objective space. In this paper, to show the effectiveness of the proposed algorithm, we test the algorithm on the DTLZ and LSMOP problems and compare it with existing algorithms, and it outperforms other compared algorithms in most cases and shows disadvantage on both convergence and diversity.


Sign in / Sign up

Export Citation Format

Share Document