competitive algorithm
Recently Published Documents


TOTAL DOCUMENTS

708
(FIVE YEARS 144)

H-INDEX

43
(FIVE YEARS 6)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 173
Author(s):  
Jianfu Luo ◽  
Jinsheng Zhou ◽  
Xi Jiang ◽  
Haodong Lv

This paper proposes a modification of the imperialist competitive algorithm to solve multi-objective optimization problems with hybrid methods (MOHMICA) based on a modification of the imperialist competitive algorithm with hybrid methods (HMICA). The rationale for this is that there is an obvious disadvantage of HMICA in that it can only solve single-objective optimization problems but cannot solve multi-objective optimization problems. In order to adapt to the characteristics of multi-objective optimization problems, this paper improves the establishment of the initial empires and colony allocation mechanism and empire competition in HMICA, and introduces an external archiving strategy. A total of 12 benchmark functions are calculated, including 10 bi-objective and 2 tri-objective benchmarks. Four metrics are used to verify the quality of MOHMICA. Then, a new comprehensive evaluation method is proposed, called “radar map method”, which could comprehensively evaluate the convergence and distribution performance of multi-objective optimization algorithm. It can be seen from the four coordinate axes of the radar maps that this is a symmetrical evaluation method. For this evaluation method, the larger the radar map area is, the better the calculation result of the algorithm. Using this new evaluation method, the algorithm proposed in this paper is compared with seven other high-quality algorithms. The radar map area of MOHMICA is at least 14.06% larger than that of other algorithms. Therefore, it is proven that MOHMICA has advantages as a whole.


2022 ◽  
pp. 1-14
Author(s):  
Hui Yu ◽  
Jun-qing Li ◽  
Xiao-Long Chen ◽  
Wei-meng Zhang

 During recent years, the outpatient scheduling problem has attracted much attention from both academic and medical fields. This paper considers the outpatient scheduling problem as an extension of the flexible job shop scheduling problem (FJSP), where each patient is considered as one job. Two realistic constraints, i.e., switching and preparation times of patients are considered simultaneously. To solve the outpatient scheduling problem, a hybrid imperialist competitive algorithm (HICA) is proposed. In the proposed algorithm, first, the mutation strategy with different mutation probabilities is utilized to generate feasible and efficient solutions. Then, the diversified assimilation strategy is developed. The enhanced global search heuristic, which includes the simulated annealing (SA) algorithm and estimation of distribution algorithm (EDA), is adopted in the assimilation strategy to improve the global search ability of the algorithm.?Moreover, four kinds of neighborhood search strategies are introduced to?generate new?promising?solutions.?Finally, the empires invasion strategy?is?proposed to?increase the diversity of the population. To verify the performance of the proposed HICA, four efficient algorithms, including imperialist competitive algorithm, improved genetic algorithm, EDA, and modified artificial immune algorithm, are selected for detailed comparisons. The simulation results confirm that the proposed algorithm can solve the outpatient scheduling problem with high efficiency.


Author(s):  
Chunfeng Liu ◽  
Xiao Yang ◽  
Jufeng Wang

In the era of mass customization, designing optimal products is one of the most critical decision-making for a company to stay competitive. More and more customers like customized products, which will bring challenges to the product line design and the production. If a company adopts consumers' favorite levels, this may lead to lower product reliability, or incompatibility among the components that make up the product. Moreover, it is worth outsourcing certain attribute levels so as to reduce production cost, but customers may dislike these levels because of their delivery delay. If managers consider the compatibility issue, the quality issue, outsource determination, and the delivery due date in the product design and production stages, it will avoid unreasonable product configuration and many unnecessary expenses, thereby bringing benefits to the company. To solve this complicated problem, we establish a nonlinear programming model to maximize a metric about profit, termed as Per-capita-contribution Margin considering Reliability Penalty (PMRP). Since the integrated product line design and production problem is NP-hard, we propose an improved Discrete Imperialist Competitive Algorithm (DICA) that can find a most powerful imperialist (i.e., solution) by the competition among all countries in the world. The proposed DICA is compared with genetic algorithm (GA) and simulated annealing (SA) through extensive numerical experiment, and the results show that DICA has more attractive performance than GA and SA.


2021 ◽  
Vol 54 (9-10) ◽  
pp. 1326-1335
Author(s):  
Hasan Babaei Keshteli ◽  
Mohsen Rostamy-Malkhalifeh ◽  
Farhad Hosseinzadeh Lotfi

One of the challenging and important subjects in Data Envelopment Analysis (DEA) is the ranking of Decision Making Units (DMUs). In this paper, a new method for ranking the efficient DMUs is firstly proposed by utilizing the DEA technique and also developing a capable metaheuristic, imperialist competitive algorithm, derived from social, political, and cultural phenomena. Efficient DMUs are known as colonizers, and the virtual units, which are within their regions of exclusive domination, are considered as colonies. Efficient units are ranked by utilizing the factor of competition among imperialists to attract each other’s colonies. One advantage of proposed method is that, without solving any mathematical, and complex solution approaches, all extreme and non-extreme units are ranked only by comparing the pairs.


2021 ◽  
Vol 68 (5) ◽  
pp. 1-10
Author(s):  
C. J. Argue ◽  
Anupam Gupta ◽  
Ziye Tang ◽  
Guru Guruganesh

We study the problem of chasing convex bodies online: given a sequence of convex bodies the algorithm must respond with points in an online fashion (i.e., is chosen before is revealed). The objective is to minimize the sum of distances between successive points in this sequence. Bubeck et al. (STOC 2019) gave a -competitive algorithm for this problem. We give an algorithm that is -competitive for any sequence of length .


Kybernetes ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ibrahim Al-Shourbaji ◽  
Waleed Zogaan

PurposeThe human resource (HR) allocation problem is one of the critical dimensions of the project management process. Due to this nature of the problem, researchers are continually optimizing one or more critical scheduling and allocation challenges in different ways. This study aims to optimize two goals, increasing customer satisfaction and reducing costs using the imperialist competitive algorithm.Design/methodology/approachCloud-based e-commerce applications are preferred to conventional systems because they can save money in many areas, including resource use, running expenses, capital costs, maintenance and operation costs. In web applications, its core functionality of performance enhancement and automated device recovery is important. HR knowledge, expertise and competencies are becoming increasingly valuable carriers for organizational competitive advantage. As a result, HR management is becoming more relevant, as it seeks to channel all of the workers’ energy into meeting the organizational strategic objectives. The allocation of resources to maximize benefit or minimize cost is known as the resource allocation problem. Since discovering solutions in polynomial time is complicated, HR allocation in cloud-based e-commerce is an Nondeterministic Polynomial time (NP)-hard problem. In this paper, to promote the respective strengths and minimize the weaknesses, the imperialist competitive algorithm is suggested to solve these issues. The imperialist competitive algorithm is tested by comparing it to the literature’s novel algorithms using a simulation.FindingsEmpirical outcomes have illustrated that the suggested hybrid method achieves higher performance in discovering the appropriate HR allocation than some modern techniques.Practical implicationsThe paper presents a useful method for improving HR allocation methods. The MATLAB-based simulation results have indicated that costs and waiting time have been improved compared to other algorithms, which cause the high application of this method in practical projects.Originality/valueThe main novelty of this paper is using an imperialist competitive algorithm for finding the best solution to the HR allocation problem in cloud-based e-commerce.


Sign in / Sign up

Export Citation Format

Share Document