equivalent form
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 37)

H-INDEX

10
(FIVE YEARS 1)

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2332
Author(s):  
Yufu Ning ◽  
Na Pang ◽  
Shuai Wang ◽  
Xiumei Chen

Volatile markets and uncertain deterioration rate make it extremely difficult for manufacturers to make the quantity of saleable vegetables just meet the fluctuating demands, which will lead to inevitable out of stock or over production. Aggregate production planning (APP) is to find the optimal yield of vegetables, shortage and overstock symmetry, are not conducive to the final benefit.The essence of aggregate production planning is to deal with the symmetrical relation between shortage and overproduction. In order to reduce the adverse effects caused by shortage, we regard the service level as an important constraint to meet the customer demand and ensure the market share. So an uncertain aggregate production planning model for vegetables under condition of allowed stockout and considering service level constraint is constructed, whose objective is to find the optimal output while minimizing the expected total cost. Moreover, two methods are proposed in different cases to solve the model. A crisp equivalent form can be transformed when uncertain variables obey linear uncertain distributions and for general case, a hybrid intelligent algorithm integrating the 99-method and genetic algorithm is employed. Finally, two numerical examples are carried out to illustrate the effectiveness of the proposed model.


Author(s):  
Minyang Chen ◽  
Wei Du ◽  
Wenjiang Song ◽  
Chen Liang ◽  
Yang Tang

AbstractIt is a great challenge for ordinary evolutionary algorithms (EAs) to tackle large-scale global optimization (LSGO) problems which involve over hundreds or thousands of decision variables. In this paper, we propose an improved weighted optimization approach (LSWOA) for helping solve LSGO problems. Thanks to the dimensionality reduction of weighted optimization, LSWOA can optimize transformed problems quickly and share the optimal weights with the population, thereby accelerating the overall convergence. First, we concentrate on the theoretical investigation of weighted optimization. A series of theoretical analyses are provided to illustrate the search behavior of weighted optimization, and the equivalent form of the transformed problem is presented to show the relationship between the original problem and the transformed one. Then the factors that affect problem transformation and how they take affect are figured out. Finally, based on our theoretical investigation, we modify the way of utilizing weighted optimization in LSGO. A weight-sharing strategy and a candidate solution inheriting strategy are designed, along with a better allocation of computational resources. These modifications help take full advantage of weighted optimization and save computational resources. The extensive experimental results on CEC’2010 and CEC’2013 verify the effectiveness and scalability of the proposed LSWOA.


2021 ◽  
Author(s):  
Xiaocheng Li ◽  
Yinyu Ye

We study an online linear programming (OLP) problem under a random input model in which the columns of the constraint matrix along with the corresponding coefficients in the objective function are independently and identically drawn from an unknown distribution and revealed sequentially over time. Virtually all existing online algorithms were based on learning the dual optimal solutions/prices of the linear programs (LPs), and their analyses were focused on the aggregate objective value and solving the packing LP, where all coefficients in the constraint matrix and objective are nonnegative. However, two major open questions were as follows. (i) Does the set of LP optimal dual prices learned in the existing algorithms converge to those of the “offline” LP? (ii) Could the results be extended to general LP problems where the coefficients can be either positive or negative? We resolve these two questions by establishing convergence results for the dual prices under moderate regularity conditions for general LP problems. Specifically, we identify an equivalent form of the dual problem that relates the dual LP with a sample average approximation to a stochastic program. Furthermore, we propose a new type of OLP algorithm, action-history-dependent learning algorithm, which improves the previous algorithm performances by taking into account the past input data and the past decisions/actions. We derive an [Formula: see text] regret bound (under a locally strong convexity and smoothness condition) for the proposed algorithm, against the [Formula: see text] bound for typical dual-price learning algorithms, where n is the number of decision variables. Numerical experiments demonstrate the effectiveness of the proposed algorithm and the action-history-dependent design.


Transport ◽  
2021 ◽  
Vol 36 (4) ◽  
pp. 317-338
Author(s):  
Murshid Kamal ◽  
Ali Alarjani ◽  
Ahteshamul Haq ◽  
Faiz Noor Khan Yusufi ◽  
Irfan Ali

The problem of transportation in real-life is an uncertain multi-objective decision-making problem. In particular, by taking into account the conflicting objectives, Decision-Makers (DMs) are looking for the best transport set up to determine the optimum shipping quantity subject to certain capacity constraints on each route. This paper presented a Multi-Objective Transportation Problem (MOTP) where the objective functions are considered as Type-2 trapezoidal fuzzy numbers (T2TpFN), respectively. Demand and supply in constraints are in multi-choice and probabilistic random variables, respectively. Also considered the “rate of increment in Transportation Cost (TC) and rate of decrement in profit on transporting the products from ith sources to jth destinations due to” (or additional cost) of each product due to the damage, late deliveries, weather conditions, and any other issues. Due to the presence of all these uncertainties, it is not possible to obtain the optimum solution directly, so first, we need to convert all these uncertainties from the model into a crisp equivalent form. The two-phase defuzzification technique is used to transform T2TpFN into a crisp equivalent form. Multi-choice and probabilistic random variables are transformed into an equivalent value using Stochastic Programming (SP) approach and the binary variable, respectively. It is assumed that the supply and demand parameter follows various types of probabilistic distributions like Weibull, Extreme value, Cauchy and Pareto, Normal distribution, respectively. The unknown parameters of probabilistic distributions estimated using the maximum likelihood estimation method at the defined probability level. The best fit of the probability distributions is determined using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), respectively. Using the Fuzzy Goal Programming (FGP) method, the final problem is solved for the optimal decision. A case study is intended to provide the effectiveness of the proposed work.


Author(s):  
Hongbo Ye

Researchers have proposed many different concepts and models to study day-to-day dynamics. Some models explicitly model travelers’ perceiving and learning on travel costs, and some other models do not explicitly consider the travel cost perception but instead formulate the dynamics of flows as the functions of flows and measured travel costs (which are determined by flows). This paper investigates the interconnection between these two types of day-to-day models, in particular, those models whose fixed points are a stochastic user equilibrium. Specifically, a widely used day-to-day model that combines exponential-smoothing learning and logit stochastic network loading (called the logit-ESL model in this paper) is proved to be equivalent to a model based purely on flows, which is the logit-based extension of the first-in-first-out dynamic of Jin [Jin W (2007) A dynamical system model of the traffic assignment problem. Transportation Res. Part B Methodological 41(1):32–48]. Via this equivalent form, the logit-ESL model is proved to be globally stable under nonseparable and monotone travel cost functions. Moreover, the model of Cantarella and Cascetta is shown to be equivalent to a second-order dynamic incorporating purely flows and is proved to be globally stable under separable link cost functions [Cantarella GE, Cascetta E (1995) Dynamic processes and equilibrium in transportation networks: Towards a unifying theory. Transportation Sci. 29(4):305–329]. Further, other discrete choice models, such as C-logit, path-size logit, and weibit, are introduced into the logit-ESL model, leading to several new day-to-day models, which are also proved to be globally stable under different conditions.


Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1893
Author(s):  
Bao Jiang ◽  
Chen Yang ◽  
Jian Li

When decision making units (DMUs) have internal structures with imprecise inputs and outputs, uncertain network data envelopment analysis (UNDEA) is appropriate to deal with the efficiency evaluation of these DMUs. However, a deep insight into clarifying the power’s differences between the internal structures of DMUs is a deficiency in the current UNDEA model. To address this issue, in this paper, we propose a new UNDEA model by differentiating the power asymmetry of each sub-stage with assumption of a two-stage system and demonstrate an additive relationship between stage 1 and stage 2 of each DMU. Moreover, the equivalent form and its proof of the new model are also presented for accurate calculation. Finally, a numerical example reflecting three different additive relationships between two sub-stages of DMUs is given to illustrate the results of evaluation.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoqin Li

This paper uses partial differential equation image processing techniques to establish image texture analysis models based on nonlinear anisotropic diffusion equations for image denoising, image segmentation, and image decomposition. This paper proposes a class of denoising models based on the hybrid anisotropic diffusion equation from the characteristics of different noise types. The model exhibits anisotropic diffusion near the image boundary, which can protect the boundary well, and isotropic diffusion inside the image; so, it can remove the noise effectively. We use the immovable point theory to prove the uniqueness of the model solution and further discuss other properties such as asymptotics of the solution. We propose a class of image texture analysis algorithms based on anisotropic diffusion equations and discrete gray level sets. First, a class of nonconvex generalized functions is proposed to remove the noise from the original image to obtain a smooth image while sharpening the edges. Then, an energy generalization function based on the gray level set is proposed, and the existence of the global minimum of this energy generalization function is discussed. Finally, an equivalent form of this energy generalization is given in the discrete case, and an image texture analysis algorithm is designed based on the equivalent form. The algorithm is improved by initial position optimization, dynamic adjustment of parameters, and adaptive selection of thresholds so that the ants can search along the real edges. Experiments show that the improved algorithm for image edge detection can obtain more complete edges and better detection results. The energy generalization function is calculated directly on the discrete gray level set instead of solving the corresponding partial differential equation, which can avoid the selection of the initial level set and the reinitialization of the level set, thus greatly improving the segmentation efficiency. The new algorithm has a high improvement in segmentation efficiency and can efficiently handle large size complex images.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6471
Author(s):  
Ji-An Luo ◽  
Chang-Cheng Xue ◽  
Ying-Jiao Rong ◽  
Shen-Tu Han

This paper considers the problem of robust bearing-only source localization in impulsive noise with symmetric α-stable distribution based on the Lp-norm minimization criterion. The existing Iteratively Reweighted Pseudolinear Least-Squares (IRPLS) method can be used to solve the least LP-norm optimization problem. However, the IRPLS algorithm cannot reduce the bias attributed to the correlation between system matrices and noise vectors. To reduce this kind of bias, a Total Lp-norm Optimization (TLPO) method is proposed by minimizing the errors in all elements of system matrix and data vector based on the minimum dispersion criterion. Subsequently, an equivalent form of TLPO is obtained, and two algorithms are developed to solve the TLPO problem by using Iterative Generalized Eigenvalue Decomposition (IGED) and Generalized Lagrange Multiplier (GLM), respectively. Numerical examples demonstrate the performance advantage of the IGED and GLM algorithms over the IRPLS algorithm.


2021 ◽  
Vol 20 ◽  
pp. 264-270
Author(s):  
Abed Makreloufi ◽  
Mohammed Benharrat

We investigate different concepts related to the controllability of linear constant coefficient differentialalgebraic equations. Concepts like impulse controllability, controllability at infinity, strong and complete controllability are described and defined by using an equivalent form for linear time-invariant singular systems. Some real-life problems are given to illustrate the presented theory.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1572
Author(s):  
Jiahao Chen ◽  
Yujiao Jiang ◽  
Guang Wang

Bi-level programming is widely used in processing various questions, but it cannot deal with the complex and fuzzy information contained in problems. In order to solve such problems better with intricate and vague information that can be efficiently handled by bifuzzy theory, a bifuzzy–bilevel programming model that sets the parameters to bifuzzy variables is proposed in this paper, which can process complex realistic data more accurately and improve the feasibility and validity of bi-level programming models. To ensure the solvability of the model, the equivalent form of the bifuzzy–bilevel programming model is obtained by utilizing the expected value operator. According to the linear and nonlinear characteristics of the model, the Karush–Kuhn–Tucker condition and particle swarm optimization algorithm are employed to handle the problem, respectively. Finally, by taking the distribution center location problem of the supplier as an example, the bifuzzy–bilevel programming model is applied in practice to balance highly intricate customer demands and corporate cost minimization, obtaining the feasible solution of functions at the upper and lower levels, and the bifuzzy information in the problem can also be processed well, which proves the effectiveness of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document